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FOREWORD

This report covers activities performed by Battelle's Columbus Labor-

atories (BCL) on behalf of the National Aeronautics and Space Administration,
Wallops Station, under Contract No. NAS6-2006, "Services for Oceanography,

Geodesy, and Related Areas Task Support". The NASA project monitor was Mr.

H. R. Stanley. The Battelle program manager was Mr. A. G. Mourad.

The investigation reported here was one of several tasks under the

above mentioned contract and represents the initial phase of a program for

developing a sea state monitoring system utilizing a bistatic radar technique.



ABSTRACT

Recent advances in understanding the physical phenomena controlling
the interaction of electromagnetic energy with the ocean surface have revealed
the possibility of remote measurement of the two-dimensional surface wave height
spectrum of the ocean by the use of bistatic radar techniques. Two such tech-
niques have been examined in this study. One operates at HF (3-30 MHz) and the
other at UHF (; 1 GHz).

Only a preliminary theoretical examination of the UHF technique has
been performed and additional work remains before its feasibility can be assessed.
The principle underlying the HF technique has been demonstrated experimentally,
however, and this study indicates that an HF bistatic system using a surface
transmitter (buoy or ship mounted)and an orbital receiver would be capable of
measuring the two-dimensional wave height spectrum in the vicinity of the trans-
mitter. In addition such an HF bistatic system could also be used with an
airborne receiver for ground truth ocean wave spectrum measurements.

During this study, ionospheric effects on the performance of -an orbital
HF bistatic sea state sensor were examined and found to limit only the ability
of the sensor to measure the higher sea states without significantly reducing
its utility.

The use of the Doppler shift imposed on the scattered signal by the
satellite motion to obtain the directional properties of the wave height spectrum
was also examined and found in general to be feasible.

Preliminary system requirements and hardware configurations are dis-
cussed for both an orbital system and an aircraft verification experiment. It
appears that the use of a pulse-Doppler system with approximately 10 watts of
average power output and range and Doppler resolutions of 3-6 km and 1 Hz,
respectively, will be required for an orbital system.
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I INTRODUCTION

For over a decade the possible use of satellites to measure sea state

has been a subject of considerable interest. The measurement of ocean wave heights

and direction of travel at several points on the earth can provide valuable data

on winds and weather, complementing direct optical and infrared satellite observations.

Various oceanographic techniques are available for measuring the ocean

wave height/directional spectrum in a local area, but none are really adaptable

to satellite remote sensing. For example, wave spars and buoy-mounted accelero-

meter/inclinometer measurements can provide crude estimates of directional spectra,

but they are expensive and need maintenance; hence, they are generally unsuited to

remote sensing in inaccessible ocean areas. Laser profilometers in aircraft have

proved successful if several azimuthal paths across an area can be made, but

effective measurement of sea state is precluded when they are used in unmanned

satellites confined to a single general orbital plane.

Glitter-point aerial photography of the sea surface has proved somewhat

successful, but the magnification required to count glitter-points, which are only

a few inches apart, from a satellite, and the extremely short exposure time

demanded by the satellite velocity, rule it out for orbital applications. Optical

signal processing of aerial photographs of the sea, as developed recently by

Stillwell, involves the same difficulties as glitter-point photography for orbital
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sensing. In addition, the need for high-resolution film for the satellite sensor

presents a serious practical objection. Finally, optical techniques for satellite

sensing are "fair-weather" techniques; observations can be made only when they are

meteorologically least important.

Attention has also been directed toward an orbiting microwave scatterometer/

radiometer for sea-state determination. The effectiveness of this device for sea-

state monitoring is a subject of considerable question on the basis of both measured

data and theoretical analyses. Only by employing quite large antennas and/or

complicated synthetic-aperture signal-processing techniques can it be expected that

reliable sea-state information could be obtained. Even then, only isotropic surface

roughness information can be obtained, with no hope of ascertaining ocean wave

direction. Hence, a need exists for development of a technique based on a

completely different principle which does not depend upon absolute measurement of

the signal level at the receiver.

This suggests the use of radio waves having a length parameter of the same

order as the longer ocean waves contributing dominantly to the state of the sea, so

as to produce a strong interaction. It has long been known that HF radio waves

interact strongly with ocean waves. Significantly, the scatter is due to the Bragg

effect, and its intensity depends directly on the heights of the ocean waves responsible

for the scatter. By exploiting polarization, motion of the ocean waves, and motion

of the satellite, a relative measure of the heights and direction of the dominant

ocean waves can be obtained.

A second possible method of sensing the longer ocean waves is the use

of two frequencies which are much higher than HF but which are separated by an

amount Af, where Af lies in the HF region. The cross-correlation function between

these two frequencies is dependent upon the slope spectrum of the longer ocean

waves evaluated at the Bragg wave number.

The bistatic techniques examined were the use of a direct Bragg scatter

mechanism at HF, and a two frequency indirect Bragg scatter mechanism at UHF.

The basic bistatic configuration examined is shown in Figure 1. A low-

cost surface-based transmitter located on a buoy or ship is activated by command from

a satellite. Radiation transmitted by it illuminates the nearby sea surface and is

scattered toward the satellite. Both the direct and the sea-scattered signals are

received at the satellite. They are recorded at a convenient IF rate for relay to the

ground and subsequent processing.
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The same basic bistatic configuration would also be suitable for ground

truth sea state measurements with the receiver carried on an aircraft rather than a

satellite.

The specific approach followed during the course of this study consisted

of the following steps:

(1) Analysis of the HF Bragg scatter technique

(2) Examination of techniques for the determination of the directional

surface height spectrum using the HF method

(3) Analysis of the UHF Bragg scatter technique

(4) Selection of a specific technique and the determination of preliminary

system parameters.

During the course of the examination of the two bistatic approaches

discussed above, it became apparent that the HF technique was much closer to fruition.

Both theoretical and experimental evidence of the validity of the basic mechanism

are available and only the examination of potential problems and hardware limitations

need be considered in assessing its feasibility. The two frequency techniques have

been assessed only theoretically and no experimental verification of the theory is

available as yet. In view of this, the investigation concentrated largely on the

HF approach.

During the course of this study, the various radar observables for the

HF technique such as signal strengths, signal polarization, signal Doppler spectrum,

time delay, etc, have been examined and related to the ocean surface spectrum and

the radiated waveform. In addition, various potential problems associated largely

with the penetration of HF energy through the ionosphere as required for satellite

use of the HF technique have also been examined.

The main results of the study are summarized and recommendations for

future work are presented in S'ection II. In Section III, the theoretical

principles of both the HF and UHF approaches are presented. This is followed in

Section IV by an analysis of ionospheric effects on a satellite HF bistatic sea

state sensor. Section V discusses various systems considerations and parameters

associated with the HF technique.

As an outgrowth of our examinations of the interaction between the ocean

surface roughness and electromagnetic radiation, the Appendix presents a simplified

technique for deriving mean square wave heights from satellite altimetry waveforms.
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II SUMMARY OF RESULTS AND RECOMMENDATIONS

Program Summary

The objective of this study has been to examine the application of

bistatic Bragg scattering concepts to an ocean wave monitoring system employing

simple sea-based transmitters and a satellite receiver. Such a system can be

used to measure the directional spatial ocean wave height spectrum near the

transmitter. This spectrum is a measure of the heights of the significant ocean

waves and the directions in which they are moving. From a knowledge of the

wind-wave directional spectrum, the surface wind pattern above the sea can be

fairly accurately constructed.

Two specific techniques for measuring the surface height directional

spectrum have been examined. One of these operates at HF frequencies (3-30 MHz)

and one at UHF (- 1 GHz). The study concentrated on the HF technique since it

is the most advanced and the underlying physical phenomena have been demonstrated

experimentally.

With respect to the HF technique, several problems that may limit its

utility have been examined as well as methods for obtaining the directional

component of the surface height spectrum. In addition, the hardware requirements

have been examined and preliminary configurations identified.

Results

The significant portion of the.ocean wave height spectrum is at the

lower end which is measured by the lower HF frequencies. These frequencies are

those most affected by the ionosphere.

The examination of ionospheric effects on the performance of an HF

orbital bistatic sea-state sensor revealed the following:

(1) The operating frequency of the sensor must be confined

to the range from 3.5 MHz to 30 MHz.

(2) Propagation conditions favorable to the operation of

the system exist generally at night between 0 and 6

hours local time. At such times the minimum ionospheric

penetration frequency ranges from 3.5 MHz to 5 MHz

depending.upon the season and sunspot-number.
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(4) During normal ionospheric conditions, the absorption

loss due to passage through the ionosphere will be

less than approximately 15 dB provided the operating

frequency exceeds the minimum penetration frequency

by at least .5 MHz.

(5) The noise environment encountered by the satellite

receiver will be that due to cosmic noise with a

maximum effective noise temperature of about 4 * 10s *K

at 3 MHz

(6) lonospherically imposed Doppler shifts can represent

a significant error source in determining the directional

surface spectrum unless the direct signal component

is used as a reference.

(7) Ionospheric induced Faraday rotation will prevent the

use of received signal polarization for determining

the directional surface height spectrum for an

orbital system.

In general, the analysis of ionospheric effects on an HF orbital system

indicates that operation at the lower frequencies must be carried out at night.

At 3 MHz waves of the order of 100 meters in length are being measured. Waves of

this length have build-up time constants of the order of 24 hours, so that

measurements at the lower frequencies once a day should be adequate.

Other than the propagation limitations imposed by the ionosphere

discussed above, no additional technical problems or limitations on the system

have been discovered. Under the assumption that the noise environment encountered

by the satellite receiver is due to cosmic noise (discussed in detail in Section IV)

adeauate signal-to-noise ratios are obtained with average transmitter power

output levels of the order of 10 watts for a satellite in a 400 Km orbit.

The directional surface height spectrum can be obtained by the use of

coherent Doppler processing and range resolution at the receiver. For a single

range cell, Doppler processing results in an angular ambiguity in the directional

spectrum. This can be resolved, however, by the use of either several range

gates or deconvolution after measurement from several orbital locations on a

specific satellite pass. This is discussed in detail in Section V.
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The hardware requirements appear to be relatively modest with the most

straightforward approach being the use of a pulse Doppler type transmitter-receiver

combination using 10-20 psec pulse widths and approximately a 1 sec coherent

integration time. More sophisticated approaches might be the use of phase-coded

or FMCW waveforms to achieve both range and Doppler resolution. The antennas

can be simple, such as a vertical whip for transmitting, or if desired the use

of a transmitting antenna with some directivity would aid in resolving the

directional ambiguities.

Recommendations

In view of the favorable results of the present study it is recommended

that a Phase II effort be undertaken. During Phase II the following specific

activities should be carried out:

(1) A field test experiment of the HF technique using an air-

craft as a receiving platform should be designed.

(2) The hardware configuration for the field experiment

should be determined and the necessary hardware

procured and modified as required.

Design specifications for the experimental hardware should be drawn up during

this phase, the test hardware assembled, and procedures for a field experiment

developed. For the subsequent experiment it is anticipated that the receiver will be

flown in an aircraft with the transmitter on a ship. Independent sea-state

measurements in the area of interest will be required using wave spars or a

laser profilometer, etc. for verification of the bistatic measurements.

The hardware configuration used for the field test experiment should

be as close as practicable to that required for a satellite system. For example,

Doppler processing to obtain the surface spectrum directionality should be tested

if possible.

The second phase should be followed by a third phase in which the aircraft

field experiment is carried out, the experimental data reduced and analyzed, and

recommendations made for both satellite hardware design and design of the hardware

for an airborne ground truth measurement system.
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In addition, a low level of effort continuation of the analysis of

the UHF approach should be carried out if possible. Even though this approach

has been examined only theoretically to date it could be quite valuable if it

should prove to be feasible.
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III THEORETICAL PRINCIPLES

HF Scattering from the Ocean Surface

At the radio wavelengths characteristic of the HF region (10 to 100 meters)

the ocean surface corresponds to slightly rough surface, and the boundary perturbation

technique of Rice ( ) can be used to determine the incoherent energy scattered from

an HF ground wave propagating across this surface. The results of applying Rice's

technique to a slightly rough dielectric surface are presented by Barrick and Peake
(2 )

These results are for plane wave incidence with arbitrary polarization and arbitrary

angles of incidence and scattering. The scattering geometry being considered here

is illustrated in Figure 2. It is assummed for the present discussion that the

incident field is propagating parallel to the average direction in which the winds

are blowing over the surface area of interest. For a plane wave incident at a

polar angle G. with radian frequency w o and wave number ko, the scattering cross
1

section per unit surface area is

o.(s, y,0.) = 47k0 cos 2 0. cos 2 e Ia.j2 (w- 8(w - wo + w ) + w 8(w - o - w )) , (I)
1s s 1 1 s 1J g g

with

w = w[ko(sin 0 cos 9 s - sin 0.), ko(sin 0 sin )]
S S 1 S

w = w[-ko(sin 0 cos s - sin 0.) -ko(sin 8 sin ps)]
S5 1 5

Wg = go[(sin 0s cos ps - sin 0i)2 + (sin 0s sin ps)2]/4 (2)

In this equation the parameters i.. are complex scattering matrix elements which are

functions of the incident and scattering angles, the incident and scattered field

polarizations, and the surface dielectric properties. The function w(k ,k ) is the
x y

two dimensional surface energy or wave height spectrum and will be discussed in

more detail later. The parameter g is the acceleration due to gravity, nominally
2

9.81 meters/s . For the incident and scattered fields either vertically or

horizontally polarized, the scattering matrix elements a.. for the ocean surface

become

* References are given on page 95.
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In these expressions e is the relative dielectric constant of sea water at HF
r

frequencies. This is approximately 80 + i 7200 at 10 MHz and is given in general

by

S 80 + i - , (4)
r Co W

with a the electrical conductivity of sea water, eo the permittivity of free space

(10" 9 /36T in MKS units), and wo the incident radian frequency.

The subscript notation used for the scattering matrix element has the

following interpretation: the first subscript denotes the polarization of the

scattered field with v corresponding to the electric field polarized along and
SAs

h corresponding to the electric field polarized along ys; the second subscript

describes the incident field polarization and v corresponds to the electric field

vector lying in the . direction with h denoting the electric field lying in the
1

. direction. For the coordinates of Figure 2, the $i direction is along -y.

It is of interest to examine the form the scattering matrix elements take

for a perfectly conducting surface. These can be obtained from Equations 3 by

taking the limiting case of e - . If this is done, then
r

hhhp.c. = - cos P
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sin p

s in (ps

Is

ah vp.c. = cos G.1

sin cps

vh 1 p.c. cos es

Ssin 0. sin e - cos s (S= 1 s s.(5)
vvip.c. cos . cos 0 (1 S

These are obviously much simpler than the previous equations and are very useful

in understanding the physical basis of electromagnetic scattering from the ocean

surface.

Returning to Equation (1), we note that although the incident field has

a frequency wo, the scattered field contains two frequency components one at Wo +-W
+ - g

and one at wo - w with the amplitude of these given by w and w respectively.
g

Relating these to the surface structure is somewhat easier if the two dimensional

surface spectrum w(kx,k ) is transformed slightly. A definition of w(kx,k ) which

is adequate for the present discussion is given by

CO 00

C2 $ w(k ,k )dk dk (6)
.@ _m x y x y

with (2 the mean-square ocean wave height. If a coordinate transformation from

kx, k to the polar coordinates k,* is applied withy

k =k cos 4 , and k =k sin (7)
x y

then

2f

S= w(k,*)kdkd* . (8)

An expression identical to Equation (1) for the scattering cross section

per unit area can be written utilizing w(k,*). It must be kept in mind however that

the total scattered power from a finite surface area is the integral of oa0dA and dA

in this case is expressed in polar coordinates. The parameter k is given by
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k = /kx + k y = ko(sin2 6s + sin2 . - 2 sin e. sin es cos s )1 (9)
x y s 1 3. s

with

sin ssin s (
= tan( s cos - sin . (10)

To simplify the discussion, we will assume grazing incidence and

scattering, thus setting ei., es to I/2 and
1 S

k = ko(2 - 2 cos ps)1/2 (11)

Sin Cp
)tan . (12)

(Cos cps 1

Examining these we see that the scattered field intensity is proportional to the

wave spectral strength at the wavenumber k. For scattering in the forward direction

k = 0 and the cross section is proportional to the DC component of the'spectrum

which as discussed later is zero. For bistatic scatter with Ps = ± r/2, the cross

section is proportional to the surface spectral components with wavenumber equal to

,//ko which are propagating with crests oriented at an angle of 450 with respect

to-the x-axis. For backscatter, only those ocean waves with spatial wavelength

equal to one-half the incident wavelength and whose crests are oriented perpendicular

to the incident field direction contribute to the scattering. Thus, depending upon

the angular orientation of the incident and scattered fields only those components

of the ocean wave structure having wavelengths greater than the incident wavelength

can contribute to the scattered power.

Physically, to first order in the perturbation analysis, the interaction

between an incident electromagnetic field and the ocean surface structure is such

that the ocean surface acts like a diffraction grating with only those wave

components having a spatial periodicity and orientation corresponding to the so-

called Bragg scattering conditions contributing to the scattered field.

In addition to the scattered intensity being proportional to the spectral

density of ocean waves of a specific wavelength, the frequency shifts imposed on

the scattered field are Doppler shifts corresponding to the propagation velocity

of gravity waves of this wavelength.



14

Thus, if one were to illuminate the ocean surface near grazing incidence

and observe the backscattered power, only those waves having wavelengths of one-

half the incident wavelength would contribute to scattering, and two spectral

components separated from the carrier by frequencies of i(I/T)/gko/2 would be

observed. The relative strengths of these two components would be determined by

the relative spectral densities of ocean waves of 1/2 the incident wavelength

moving away from the transmitter and toward the transmitter.

If the scattering matrix elements given by Equation (3) are examined in

conjunction with Equation (1), it appears that for a dielectric surface such as

the ocean, the cos2 e. factor in Equation (1) results in the scattering cross
1

section going to zero at grazing incidence for both horizontal and vertical

polarization. This appears to be contrary to experimental evidence where the

horizontal polarization cross section appears to approach zero as the incident

angle goes to grazing; however, the vertical polarization cross section appears to

be nearly constant for angles near grazing and equals the values predicted for a

perfectly conducting surface. Thus, experimental measurements indicate that at

HF for grazing and near grazing angles, the ocean scatters as if it were a perfectly

conducting rough surface.

The deviation between the experimentally observed cross sections and

those predicted by Equation (I) is due to the use of an assummed plane wave incident

field in the derivation of Equation (1). For an HF transmitting antenna located on

the earth's surface, the field on the surface at a short distance from the antenna

is not a plane wave but a type of surface wave commonly called the ground wave.

The ground wave field is not vertically polarized but propagates with a slight tilt

into the earth's surface. The effect of this wave tilt is equivalent to a plane

wave incident at an angle slightly above grazing, thus the scattered field is not

zero for an incident ground wave. At frequencies of 3-30 MHz over sea water the

wave tilt is of the order of .25 to .50. At angles of this order above grazing,

the vertically polarized scattering cross sections of the actual ocean surface

differ insignificantly from those for a perfectly conducting surface with the

same geometrical properties.

Thus, the perfectly conducting scattering matrix parameters given in

Equation (5) are applicable for the ocean surface for an incident ground wave

with 0. = 1/2. This allows the polarization dependence of the scattering to be

easily examined. For a vertically polarized ground wave only Cvv and %v are of
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interest. Using these gives the following scattering cross sections

o (es, s, 2) = 2nk4(sin s - cos Cps)[w 8(-) +w 6(+)) , (13)

and

=T 2r + i e

ohv(Os,cps, 2M cos' e sin Cps (w8(-) +w+ 8(+)) . (14)

Examining these for 0s near zero which is the bistatic geometry of interest for an

orbital or airborne sensor, it is apparent that a is maximum for s = 0,T and
vv

small for Ys = ±-/2. Thus the scattered field polarization is nearly horizontal

and parallel to the incident field direction. Similarly ahv is maximum for

Ps = ±11/2 and zero for cps = 0,, however in both cases the field is polarized

dominantly in the horizontal plane.

The Ocean Surface Spectrum

The most useful existing model of the sea surface and the one providing

the most agreement with the available experimental evidence is the representation

of the surface height as a function of position and time as a random process in

which the surface height is given by

C(x,y,t) = cn cos (ux + vny + oat + e) , (15)
n=n

where the wave numbers (unV n) are densely distributed throughout the u,v plane.

The frequency parameter an is in general a function of un, v . The amplitudes cnn n n
are random variables and in any element dudv

c 2 = w(u,v) dudv (16)
2 n

n

The phases e are distributed randomly and with equal probability in the interval
n

(0,211). The mean-square value of C per unit area of surface per unit time is
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x y t C C

C2 lim 2 t a dxdydt = cn = w(u,v)dudv . (17)

xyt- -y -t n -0 _CO

The function w(u,v) is called the energy spectrum of ( and the contribution to the

mean energy from an element dudv is proportional to wdudv.

A knowledge of w(u,v) is in general all that is required in order to determine

the average properties of the surface, i.e., mean-square height, average surface

slopes, etc. For our purposes is also necessary to know the dispersion relation

for the surface, that is,the relation between the phase velocity of a particular wave

and its wave number. Designating the wave number by k as usual, where k = 2T/X the

phase velocity for small amplitude gravity waves is given by

v 2 = () tanh kh (18)

with h the water depth. For deep water tanh kh approaches one, thus v2 = g/k. This

has been used in the derivation of the Doppler shift of the scattered field due to the

ocean wave motion as given by w of Equation (2).g
Very little specific information is available with respect to the full

two-dimensional surface energy spectrum of the ocean and its relationship to the

wind velocity,duration, and fetch. A number of models have been developed for the

non-directional spectrum. The non-directional spectrum can be obtained by integrating

w(u,v) over all directions and this is most easily carried out in polar coordinates.

If a coordinate transformation from the u,v plane to the k,* plane is made then

o 2n

f w(k,*) kdkdi . (19)
00

If s(k) is defined as the non-directional-spectrum, then

2n

s(k) = w(k,*) d* , (20)

and

COs(k) kdk . (21
C2= s(k) kdk (21)
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The non-directional spectrum s(k) can be estimated from measurements taken with wave

staffs or other instrumentation. In addition, theoretical models for s(k) have been

developed. The first model to gain wide attention was that developed by Neumann where

s(k) c k9/2 exp kV) (22)

with V the wind velocity, and c an empirically determined constant. Subsequently

several workers (3 ) pointed out that for large wave numbers, theoretical considerations

indicate that the spectrum must be proportional to k"4 rather than k"9/ 2 as indicated

by the Neumann spectrum. Phillips (4 ) indicates that in the equilibrium range where

winds of sufficient duration and fetch are present the spectrum must have the form

s(k) =Ak" 4  . (23)

In addition, his theory predicts that waves with wave numbers smaller than g/V2 can

not be present in a wind driven sea. Any wave structures with smaller wave numbers

must have propagated into the region from other areas. This is generally classified

as swell in contrast to the wind sea generated by local winds.

Since it is somewhat unrealistic to expect the surface spectrum to have an

infinitely sharp cutoff at k = g/V2 , several spectrum models with exponential cutoff

have been used. One of these combines the Phillips type of equilibrium behavior

with Neumann's exponential cutoff. This spectrum, designated here as the Neumann-

Pierson, is given by

s(k) = 2Ak "  exp . (24)

Another such spectrum, designated here as the Pierson-Moskowitz has a somewhat

sharper exponential cutoff. This has the form

- -. 74g 2

s(k) = .74Ak 4 exp k 2 V4  (25)

Returning to the two-dimensional spectrum w(k,i), it is often assumed

that this is isotropic. In this case

w(k,4) = s(k) (26)(26
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Another assumption often used is that w(k,*) is non-zero only in the sector ±900

around the mean wind direction. Within this sector, it is usually assumed to be

either isotropic or have a cos2 * directionality. There is little theoretical or

experimental support for any one of these assumptions however. If w(k,*) is

assumed isotropic from -n/2 to r/2 then

w(k,t) = s(k) (27)

TT

and if a cos2 directionality is assumed then

2
w(k, ) = 2 s(k) . (28)

Based on a number of measurements, an appropriate value of A appears to

be of the order of .005. Although various values for the constant A appear in the

literature, most are of the same order of magnitude and in fact Longuet-Higgins
(5 )

has demonstrated from fundamental principles that A must be of the same order of

magnitude as .005. It should be noted that as given by Equations (23), (24), and

(25) the various spectrum models are normalized so that for a given wind velocity V,

the same RMS surface heights are obtained from all three spectral models. The true

relationship between the RMS surface height and the wind velocity has, of course,

not been established as yet.

Surface Spectrum Measurements Using HF Scattering

The scattering cross section at HF as given by Equation (1) can be seen

to depend directly upon the two-dimensional surface energy spectrum w(u,v) or

equivalently w(k,*). To simplify the discussion, the case where e. = n/2, G = 0
i S

will be examined for vertical polarization and the perfectly conducting scattering

matrix coefficient will be used. This is valid as discussed previously. Under

these conditions

a 4nki cos cp [w6(-) + w 8(+) , (29)

andVV
and
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+
w w(-k ,0) , w + w(ko,0) . (30)

Assuming for the moment that the spectrum is isotropic and using the Phillip's

spectrum, then

w(k,A k 4  (31)

using Equations (23) and (26). The corresponding value of w(u,v) is

4A (32)w(u,v) = (u 2 4A (32)
(u,+ V 2 ) Z T

Using this, then w (-ko,0) = w (ko,0) = (4A/TT) k- 4 , and

a 16A cos2 P (33)
VV

for values of k > g/V2. This relationship indicates that the bistatic cross section

for cps 
= 0, is essentially constant for frequencies greater than cg/2nV2 and

responds only to the spectral strength of those waves moving parallel to the

incident field direction.

Thus an obvious way to measure the surface spectrum is to illuminate

the surface at a number of HF frequencies and determine the resulting scattering

cross section. If this is done, then the observed scattering cross section will

be a direct measure of the surface spectrum. The entire two-dimensional spectrum

can be obtained if the surface is illuminated at various incidence angles relative

to the mean wind direction. This is automatically accomplished if an omnidirectional

transmitting antenna is used.

Considering then, an azimuthally omnidirectional transmitting antenna

illuminating a region around the transmitter. At a particular near zenith

observing location, the scattered energy received, corresponding to a specific

transmitted frequency, is proportional to the spectral intensity of those ocean

waves propagating in a radial direction between the transmitter and a particular

scattering region and whose wavelength is equal to the transmitted wavelength. Thus

if the directionality of the spectrum is to be measured some means for distinguish-

ing the angular location of a scattering region relative to the direction of travel

of the ocean waves is necessary.
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The only received signal parameters which can be directly related to the

scattering geometry and wave direction are the polarization and Doppler shift. For

a satellite-borne receiver orbiting in or above the ionosphere (above approximately

200 km) the ionospheric Faraday rotation precludes the use of signal polarization

at HF frequencies. This is discussed in more detail in Section IV.

Thus, the signal Doppler must be utilized to obtain the directional spectrum

with a satellite system. In order to do this, some form of range resolution must

also be provided in order that specific surface areas surrounding the transmitter

can be delineated. The use of the received Doppler for determining the directional

spectrum will be examined in detail in Section V.

Returning to the measure of the non-directional or integrated spectrum,

Equation (29) indicates that the bistatic cross section is proportional to the surface

spectrum multiplied by k4 and cos2 p. Considering a receiver located vertically or

nearly vertically above the transmitter, the differential received signal strength

per unit surface area is proportional to the scattering cross section multiplied by

a factor which includes the antenna gains, ranges, transmitter power output, etc. as

given below

,Pt G tGr koL

dP= (P t p r dA o = dKo o . (34)

In this equation G is the receiving antenna gain, Gt is the transmitting antenna
r

gain, Pt the transmitter power output, p the distance from the transmitter to the

scattering area dA on the surface, r the distance from the scattering area to the

receiver, Xo0 the transmitting wavelength, and L accounts for various loss factors

such as ground wave attenuation, ionospheric attenuation, etc. This equation is

for the CW case where both P and P are average powers. If the multiplying factorr t

dK is known as a function of frequency, and this will be the case if the direct

signal is available as a reference, then the received power normalized by dK is

proportional to O.

To illustrate the manner in which this varies with the surface properties,

curves of o° versus transmitted frequency have been calculated for two different

surface spectrum models and several wind velocities. The spectral models used are

the Pierson-Moskowitz and the Neumann-Pierson. These curves are illustrated in

Figures 3 through 10. The ordinate in these Figures is given in dB.
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It is apparent that for the higher wind velocities the surface spectrum

is saturated at the higher frequencies, and drops off quite steeply at the low

frequency end. The actual non-directional surface spectrum is of course given by

k;4 o. To the extent that o can be determined accurately, which is equivalent to

a knowledge of the multiplier dK of Equation (34) and the received power, then the

received power can be related directly to the.true surface spectrum.

In order to determine sea state or RNS wave height from the received

signal, it is necessary only that the integral

Sk4 0 o kodk o  (35)

be evaluated. To the extent that this can be done accurately, then the true

RMS surface height results irrespective of any surface models. The models used

for the curves of Figures 3 through 10 were simply to illustrate the form that the

received signal would have and the general dependence on frequency and wind velocity

or sea state.

It should be noted, that if the ocean surface structure is of a mixed

nature due to the presence of swell, shore effects, etc. as well as pure wind sea,

the evaluation of the integral in Equation (35) will still result in a measure of

the true RMS surface height in the region of interest.

Surface Spectrum Measurements Using UHF Scattering

The surface spectrum can also be measured by operating at two UHF

frequencies which are separated by a frequency in the HF region. The cross-

correlation coefficient between the power scattered at the two frequencies can be

related to the surface slope spectrum at a wave number corresponding to the

difference frequency. This technique, if feasible, would be essentially unaffected

by ionospheric propagation phenomena and thus not subject to some of the limitations

of the HF approach. In addition, the hardware difficulties associated with HF

antennas at the lower frequencies would be obviated.

This approach could in principle be utilized in the same bistatic configuration

as the HF technique or it could be used in a backscatter mode without requiring a

transmitter on the surface.

The theoretical principles underlying this approach are presented in the

following section.
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Two-Frequency Correlation Technique for Measurement of

Ocean Wave Surface Spectra

Initial Formulation

To demonstrate the concept and principles involved, the analysis will be

restricted to (a) backscatter, (b) perfectly conducting surface, (c) horizontal

polarization states, (d) a one-dimensional random surface corrugated along the

plane of incidence, and (e) an incidence direction not too close to the specular

direction (i.e., the vertical), but yet not so close to grazing that shadowing is

a problem.

The analysis to follow is based on several approximations which appear

either justifiable for the sea mathematically or vindicated by experimental data.

These are

(a) The slopes of the ocean surface are not too steep.

(b) The height can be represented in a composite manner as the sum of

two components, i.e., C(x) = CL(x) + s (x), where CL includes those

ocean-wave components whose heights and lengths are greater than a

wavelength, and Cs includes those smaller-scale short gravity

waves whose heights are considerably less than a wavelength. The

former alone produces quasi-specular scatter while the latter

alone produces Bragg scatter.

The far-field Chu-Stratton integral equation for scatter is
( 6 )

ikR L/2 L/2

S iwne X eLs n X s ko /o -) o

^s -

X e-ikoko -r ds , (36)

with Th = /_7OT . The area within a radar resolution cell is taken for convenience

to be a square of side L, where L is much greater than wavelength but much smaller than

the distance to the radar, Ro . The incidence and (back)scatter unit direction vectors
here are o = x sin 0 - z cos , o = O = -x sin + z cos , r = xx + x )z

these are illustrated in FiLure s.
these are illustrated in Figure 11.
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On the surface, s and sH are approximately composed of two terms: (a) the

physical optics field, i.e., 2 X H , and (b) the scattered field predicted from

the Rice theory. The latter produces scatter by the Bragg effect, and dominates

the return reasonably far away from the specular direction, while the former

dominates near the specular direction. Since we are interested only in the latter,

the fields on the surface to be used in Eq. (36) are the Rice summations for the

fields scattered in all directions from a slightly rough surface, Cs(x). The sur-

face over which the integration is performed is CL(x). Thus

ds = + L') dx dy , and i = - L x + 1 + -4

and the integration now takes place over x and y .

The First-Order Scattered Fields
at the Surface

The first-order locally scattered fields for horizontal polarization

near a point x, y on L must now be found. These are:

00
s . -ikoC L cos 0cosL

E = e AmE(m,z)xm

m=-=o

-ikoC L cos 
8 O

Es LE = e X BmE(m,z)
ym

m=-mO

-ikoCL cos 0Es L
E = eX CmE(m,z)z m

m=-m0

where

E(m,z) = Eo exp [ia(m + VI )x + ib(m)z) ,

where b(m) = /k - a2 (m + V) , a L
S
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-ikoC L cos e
Here, the phase factor e L must be used because the incident

field strikes the surface not with origin at z = 0, but at z = CL The quantity

V is V = (kosin 0)/a,-where 0 and hence V are functions of the slope of the

large-scale surface at the local incidence point x, CL(x ).

Since we are dealing with a one-dimensional surface, we can define the

height above the large-scale undulation as z.= Cs(x), with Fourier expansion

O

Cs(x) = P(m) ei a mx

where the spatial spectrum W(p) is defined in terms of the Fourier coefficients

P(m) in much the same manner as for a two-dimensionally rough surface as

0 for m -n

<P(m)P(n)> =

W(p) for m = -n
s

For horizontal polarization, we have the following results from the Rice

solution for the first-order scattering coefficients:

A (G ) = 0 ; C ( 1 ) = 0
m m

(1)
B(m = i2ko cos P(m)m

Evaluation of Factors in Integrand of Eq. (36)

We now proceed to evaluate and simplify the various factors in the

integrand of Eq. (1), using the first-order electric field expressed derived above.

S is obtained from the following Maxwell equation:

-s i ?-- 5 i- oVXE - -

where the time factor e-iwt is used throughout and suppressed. t

t Note: b/by = 0 because nothing varies in y-direction.
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AA

x 0 z BE s  BEs

iiwo iWo ( x X z )
0 E s  0

y

-s
Note that this is the local field near x' and CL(x ); hence evaluating s

in terms of E and substitution into Eq. (36) gives
y

m L/2
s -iLe 2 koR L x

Es(Ro) -B4Ro , b(m) sin Os -a(m + ve) cos4Mro m j 5s s
m= - 0 -L/2

+ k0 sin ) + b(m) cos es + a(m + vL) sin es

iamx + iavcx + ik o sin x - i2k o cos eCL
+ ko cos ] e dx (37)

Application of Stationary Phase Principle

Now, we look at each term of the summation separately, and evaluate the

factor in square brackets in the above integrand.at the specular, or stationary

phase slopes. In other words, the expression in brackets is a function of aL//x,

which varies with x . For a given m, however, only certain regions with certain

slopes can contribute to the scattered field. These are found from setting the

derivative of the phase equal to zero.

Before we do this, however, we will convert entirely from x to x . We

do this by noting initially that

+ ko sin tan-,FL8 = 89 + 8s  ; vZ ; 0 = tan. I --
s a s L7X J

(note that x = x cos e ). Thus the terms appearing in the exponential become

5A

amx ,( 1 s
mx a=o "'amx i + -I - amx

cos 0 2 s
S
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avx = ko sin x = kox' sin e 1 + 02) kox sin 9

The phase is now given by:

cp(x) = amx + 2kox sin 9 - 2ko L(x") cos 9

d L

.. = 0 = am + 2k0 sin 0 -2k 0 dCL cos e
dx x

sp

L am + 2ko sin 9
dx s2k cos 0 s

sp sp

This conforms with the expected Bragg scatter criterion, which says that

a diffraction grating of spatial wavenumber am, tipped at an angle 9 with the x
S

axis, will produce backscatter in a direction -e if am = 2ko cos 0 (6 L/x') -

2k o sin 0.

Now, let us evaluate the factor in square brackets in the integrand at

the stationary phase value and try to simplify it. If we retain only first-order

terms in 6CL/bx (or 0s ), then it can be shown that

2

[m]s p = b(m) + amko sin 9 + 2ko] 2k o cos 9

Calculation of Average Scattered Power

We now square jEsj and then evaluate its average in separate stages.

Denote s = Esy . Then, from Equation (37), we have

L/2 L/2

Es 16L6Ro BmBmmsp[ml] ] spi2  dx dx
mI m2  -L2 -L2

ia(mlx - m 2xa) + i2k o sin O(x - x2 ) - i2k o cos 0 [L(x) - L(x)]L×eLcs )]
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where we have made the transformation indicated on page 34 to the x system from

the x system.

At this point, let us drop the primes on all the x's for convenience.

Also, substitute

Bm = i2k o cos 1P(m)

where 0 = 0 - 0s is the local angle of incidence.

Hence

L
cos cos 0 + T sin

Defining

(am) = [m]s p cos 0 sp

then

L/2 L/2
Es = 2 (am am) P(m m)P(m 2 ) X dx j dx 2

4 n m2  -L/2 -L72

ia(mlxl - m2x2) + i2k 0 sin e(xl - x2 ) - i2ko cos O( L(x) - C2 (x) . (38)

Xe

Now, averaging IEs first with respect to the small-scale roughness

process. We assume of course that Cs is statistically independent of L. Also,

let us replace am = p with ko0 T, where f is a normalized (with respect to radio
wavelength) wavenumber.

From the definition of the Fourier series for ~S, we have



37

T

SW(ko ) for mi = me2
s

<P(mi)P*(m2 )> s

0 for m i  m e  ,

where < >s indicates average with respect to the small-scale structure.

Thus

L/2 L/2

<IEs >s= L
2
ki [) 2 W(kor) dx S dx 2 'eiko( + 2 sin 0)(x 1 - x 2 )

s 4rLS Rom m -L/2 -L/2

- i2k o cos 6 [CL(xI) - L(x2)] .

Now, let us change variables to Ax = x - x 2 and integrate over the

remaining variable. The integration limits over Ax can be replaced by +±, since

L is taken as much larger than the correlation length of the large-scale roughness.

CO

><E s =  Lsko m )2 W(ko )  dAx
s m -

iko( + 2 sin 6) - i2k o cos [C L(xI) - L (x 2 )]

Next, we average over the large-scale roughness structure, < >L. This

completes the averaging process, and we denote <<IEs l2>s>L <Esl 2>. The large

scale averaging process affects only the integral.

The average of this integral in the high-frequency limit (ko L - )

will be evaluated by the technique outlined in Reference (7), i.e.,

r P ikoqxbx ikoqz L(XI) C (L (x 2 )  2.x
Lim ko  dAxe <e L)qzL q

ko - .C z z
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where qx = + 2 sin e and qz = + 2 cos 0.

Hence

<IES2> = Lk I X W(k 0 )P -)4r1L R 2q L qi
s z z

~I

m

where P L(dL/dx) is the probability density function of the large-scale slopes of

the surface.

Converting the sum into an integral, i.e.,

<P(m)P (m)> = W(p)dp
m

we obtain

<1E12> - L W(ko)PL(+ 2x d . (39)

Covariance of the Scattered Power at Two Frequencies

Now the covariance of the power at the two frequencies, represented by

radio wavenumbers k and kb will be evaluated. To do this, we go back to Eq. (38).a b

Note first of all that (am3 can be written in terms of T, with k or k
a b

removed.

k2L2 L/2 L/2

" P Es (ka ) I = X. amj(am}*P(m)P (me) dx 1  
dxa / a 4TT7R2 21 * x

mI me -L/2 -L72

ia(mlx - m2 x 2 ) i2ka sin 0 (x1 - x2) - i2ka cos (L(xi) - (L(x2))

where we have as before, dropped the primes on the x-y coordinates.
where we have, as before, dropped the primes on the x-y coordinates.
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Hence, the covariance is

k 2 k2 L4Pab ab * I*
Pa b 16 R (aml)(am2 LamJ(am4n4 *P(ml)P*(m2 )P(ms)P (m4)

ml m m3M M4

L/2 Sia(mlxl - m2 x 2 + msx 3 - m4x 4 )

X 4 dx dxedx3 dx4 e

+ i2 sin e (kax, - kaX2 + kbxs - kbx4)

Se-i2 cos e (ka L(xj) - kaCL(X2 ) + kbCL(x3) - kbC L(x4)) (40)

Average Over Small-Scale Structure

We now average over the small-scale structure, noting that for Gaussian

surfaces,

<P(ml)P (m 2 )> <P(ms)P (m4)> + (i)
<~m ) *(m)P m) * =

<P(m)P (m2)P(m 3 )P (mn4 )> s = + <P(m)P(ms)>s<P (m2 )P (m4)> s + (ii)

+ <P(m)P (nm4)> <P (m 2 )P(ms)> . (iii) (41)
S 5

Of the three terms present in the above equation, we note that the

second, (ii), contributes nothing except near the specular direction (0 - 0); this

occurs because it is nonzero only when m3 = -mi and N4 = -m2 . When this happens,

we have iaml(xl - x3 ) + i2 sin 0(kaXl + kbxl) in the exponent, which causes it to

oscillate rapidly except when 0 = 0.

The first term, (i), contributes in much the same manner as it did when

we averaged P separately to obtain Eq. (39).
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Average Over Large-Scale Structure

Let us examine the first term, (i), of Eq. (41) therefore:

k 2 k 2 L 4  O

a b I rd
<Pa b si 167 Ro J dpi ps3(am12am3 2 W(ka 1)W(kb)

L/2
[1 r ika(TI - 2 sin 0)(xl - x2 ) + ikb(T6s - 2 sin 0)(xs - x 4 )

X JJJ
-L/2

-i2 cos O[k ( L  - L ) + k ( - dxdx dX3 dx) ]
X e dxdxedxsdx4 .

Let Ax1 E x1 - x 2 and Ax3  xs - x 4 . We now integrate over the large scale

roughness, noting that:

r ika q xix + ikb q A 3  ika qz (L(x) - L (x 2 ))

Lim ~kakb J dAx1  daxxe  <ezk s
k c- CO0 _CD 0

a
k CO
kb -

+ ikb zq (L(xa) - L(x 4 )) X .

DL q PL q q s;xx
z z z

where P [(L L1/x 1 ), (OL /6x 3 ); xI, xs ] is the joint probability density function of

the two surface slopes 6CL1/x, and 6 L3/6x at two different surface points, xI, and

X 3 *

We assume that the large-scale roughness process possesses statistical

stationarity so that this joint density function does not vary absolutely with x,

or x3 , but rather with their separation, Ix 3 - x I. This is certainly true of the

sea over areas of concern in experiments here (e.g., less than 100 km in extent).

Thus:
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k k L4 mC C L/2
- a b r [ 2T 2r<P2aPbi q16nR dp dps[i)2 3}23 W(ka'1 )W(k T) X dx dxsa Pb i q q16rrR 0 -cc a b' i x~

z-C - -L/2

q qxs

XP + P L +  ; x 1 , X3L q -1 qz z

We now proceed to get an approximate evaluation of this integral, first

interchaning the orders of integration such that fdpjjdp3 is done first.

These integrals in dpl, dp3 can be converted to integrals in dh, dT6,

which can in turn be converted to slopes by letting s, = qxl/qz, s = qxs/qz

The factors [%})2 W(ka %I) and {TJ3) W(kbTJ) can also be expressed as functions of

s, and s3, and can then be expanded into Taylor series such that

2
2 2 d[1a}) W(k aT)]

(f')2 W(kaj) = fI} W(k a)s = 0 + ds a s + '
a a i,=0ds, s

with a similar series for (~s 2 W(kb).

Higher-order terms in the series, being dependent upon the slopes s, and

s3, should be small when these slopes are small; they are for the sea, as implied

in PL(sl,ss;xj,xs), which has a variance of the order of tan (<sl>/ ) =70 to 80.

Hence, if we retain only two terms of the series and do the integrations

over s, and s3 we will end up with two non-zero quantities:

(a) kakb[ 1 W(kai1 = 0 32 W(kbTLS) X fSdsldssPL(sl,s3;xl,x3 )

is, 0 S3 0 _00 _O

2 2

and (b) d([ W(kaT)) d((T3 W(kbTb))
a b  dss = 0 dss S3 = 0

OX dsdsssssPL(ss;xx)X j'"dsldsss:ssPL(S ,s3 ;xl Xs)

O



42

The integral in (a) above is identically unity by virtue of the normalization

of a probability density function.

The integral in (b) above is RsL (Ax), where RsL(Ax) is <sls s > L , the

covariance function of the two slopes s, and s3 separated by Ax = x3 - xl.

Thus we have:

kk 2 L4  4 L/2
<P ab { W2 (ko) dx dx3
a b- i -q 2 6TT2 Rj

z s = 0 -L2

L/2 L/2 - x

+ d[()W(k)] s = dx d(Ax)RSL(Ax) . (42)
r L ds s = 01 L 2 -L/2 x, xL(x

The integral in the first term is simple: L 2 .

The integral in the second term should be zero for the following reason:

if L is very large with respect to the correlation length of the large-scale structure,

then we can replace the limits by ±-. Then we have _. RsL(Ax)d(x), which is WSL(O),a SLSL()

the slope spectrum of the large-scale roughness evaluated at zero wavenumber. This

is zero, however, since there are never ocean waves with zero wavenumber, or infinite

wavelength, present on the sea.

Thus the answer for the first term is:

k~kbL8
<PaPbi q a b [1)4 W2 (ko ) (43)

z is = 0

This is the square of <IEs12> given in Eq. (39), if that equation is

evaluated in the same, approximate manner by expanding [')2 W(ko ) in a series.

Now, let us examine the third term, (iii), of Eq. (41):

k 2 k 2L4  O

<P siii 1 a b dpl dp3 [am1 (k a ) ) [am(kb)) [am (kb)ams (ka)a b siii 16 a

L/2

X W(ka )W(kbTh) jS dxIdxedx3 dx 4 X

-L/2
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ikb(T - 2 sin e)(xj - x4 ) + ik (Tb - 2 sin O)(x 3 - x2 )
Xe a

X ei2 sin OAk(xl - x3 ) - i2 cos 0[kb(L L- + ka( Ls - L2)] + 0

where k ka - kb = separation (beat) wavenumber.

Also, we note from the orthogonality requirement on the small-scale Fourier

coefficients, P(m), that m4 = ml and m2 = m 3 .

Also, the quantity 0 in the exponential argument refers to all terms of the

order of AkCL cos 0 or smaller; Ak is to be kept small enough that it will make

AkCL considerably less than unity. Hence, all such terms in the exponential are to

be neglected here.

We note that since am, = am4 , this implies that ka% = kbTk is a natural

definition. The same applies to am2 = am3 = kb 22. Thus we have, after averaging

over the large-scale roughness,

4 CO CkakbL"
<Pa Pb>iii a b dpl dps(%21(T2) W(ka )W(kbTb)

z 6T-qO

L/2

X jJ dxidx3 ei2Ak sin G(x - x 3) PL ( + q ; xs 1 , 3 )x dxixce P, + ; xt , xs

-L/2 z z

where qx /qz and qxs /qz are the same as before, the surface slopes evaluated at x,

and x3 required for Bragg scatter.

This equation is identically the same as that at the top of page 41,

except for the factor eik sin (xl - x) in the integrand. The steps in the

solution are thus identical to those previously. Thus we obtain the following

result:

k2 k2 L4  L/2 L/2
<Pabii i  q b 6  ([)4 W(ko) dx dxsei2Ak(xl - x3 ) sin e

a b s = 0 -L -L 2z is 0 -L2 -L/2
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L/2 L/2
[d( [) 2 W(knj)) -i2Akx sin (+ d ds i= 0 d x j -L d x s R S L ( Ax ) e  k , (44)

-L2 -L72

where Ax E xs - xj, and where we had used the fact that

CO 00

r
j j dsldsaslssPL(sl,s3;xixs) = <slss> = RSL(Ax)

-CO -CO

Carrying out the first two integrations, we obtain:

L/2
dxe i2Akxj sin e sin (AkL sin e)

J e (AkL sin 0)
-L/2

The second term is the important one because it gives the desired slope

spectrum of the large scale structure. We show this as follows:

L/2 L/2 + xs
F -i2AkAx sin e Ldxs 3  d(Ax) RSL(Ax)e = - W (2Ak sin )jSL rr SL

-L/2 -L/2 +x 3

Thus we obtain for Eq. (44)

<PP> ab Lsin (AkL sin )e W
ab iii q * 16r 2 R AkL sin W(k.

s =0

+ E s W ( k ° ) ) s = 0 1 W (2Ak sin e)} . (45)

Thus, <PP b> = <PaPb>. + <PaPb>iii, where the first term comes from

Eq. (42) and the second term comes from Eq. (45).
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Variance of Scattered Power

We now take the variance of the scattered power about its mean, i.e.,

Var[P(Ak)] <PaPb> - <Pa ><Pb>, where the factors in the latter term are obtained from

Eq. (38) by expanding [1B
2 W(koT) in the same manner as done here. Then it turns

out that <PP >. = <P ><P > to the order of terms retained here.
ab i a b
Hence, V [P(Ak)] = <PP >..., i.e.,ar ab 11

a sin (kL sin ) 2
Var[P(Ak)] = q l6 S L AkL sin e LT'(1) 2 W(ko)s = 0

_______R Aksi sin ~]-
Z

+ d((l}2W(k.n)) ] = 0 I WSL( 2 Ak sin e) . (46)

Interpretation

(a) The first term in Eq. (46) is merely the convolution of the range

resolution cell on the surface, i.e., (L/2) sin e, with the two-way sep'aration

wavenumber, 2Ak. Assumed here of course is that the illumination over the cell

is uniform and zero outside. If the cell is pulse-limited, it means that the

pulse is rectangular. If the cell is beam-limited, this means that the beam is

uniform out to the three-decibel point and zero outside.

For realistic illumination functions across this cell, the (sin x)/x

function will be replaced by the Fourier transform of the actual illumination

pattern. With a properly tapered illumination function, the first term can be

kept very small, so long as AkL is very large compared to unity.

A properly designed experiment would make the illumination pattern and

L large enough (i.e., even approaching CW) so that the first term is negligible

compared to the second in Eq. (46). Then Ak will be swept through the significant

lower end of the gravity wave spectrum, i.e., Ak corresponding to Af swept from

about 2 MHz to 20 MHz, providing a sampling of the slopes of all gravity waves

whose wavelengths vary between about 100 meters and 10 meters.
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Derivations Required in Expansion in Phillips

Saturation Region for Small-Scale Roughness

In order to quantitatively determine the magnitude of the factors appearing

in (45) containing (j)2 W(koj) and its derivative, we must employ a model for W(p),

the one-dimensional spatial height spectrum for the smaller-scale roughness. Since

we plan on using a center frequency around 1IGHz, this means that kor appearing as the

argument of W is of the order of 15 m-1; this in turn means that Bragg scattering is

produced by ocean waves of the order of 30 cm - 1 meter long. Waves on the ocean

of these lengths nearly always exist, and follow a Phillips-type spectral behavior

because they are usually fully developed.

In two dimensions, the usual Phillips spectrum for saturated gravity

waves is written as W(p,q) = 4B/f(p
2 + q2 )2 for p > 0, -- < q < m.

To convert this to a one-dimensional spatial spectrum in p, we must

integrate over q to obtain:

B

W(p) = B (47)
p

for p > 0. The dimensionless constant B is found empirically to be approximately

0.005.

To evaluate the required factors at s = 0, we note the relationship

between p, , and s:

= -P-= 2s cos e - 2 sin e .
ko

Then

i= [Ii - (2s cos -sin e) 2 + cos e + s sin I X cos D + s sin ]ko I I

and

W(koI) B is cos e - sinW~ko ) =

Using these quantities, the required factors, when evaluated at s = 0,

become:
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) W(ko) B cos 4 e0 and (48)
s 0 2ko sin and (48)

d( [1 2 W(ko )) - B coss 22d([ } e ~ ~~ W4o)l _-Bcs (5 sin e 6 - 3 cos e 9) . (49)

ds s = 0 2k o sin (5 sin cos 0) (49)

When these factors, evaluated in (48) and (49) above, are substituted into

(45) for the variance of the scattered power, we obtain

kkbVar[P(k)] L 6 B2 cot 6  cos 2 sin (AkL sin )2
Var[P(Ak)] = 26  0R C AkL sin 0 J +

(5 sin2 0 - 3 cos2 a) )+ TTL sin2 e WSL( 2 Ak sin 0) . (50)
TrL s ino 0 SL

Since it is the second term in Eq. (50) which contains the desired information

about the large-scale gravity-wave slope spectrum, it is desirable to select 0,

the incidence angle, such that the magnitude of the second term is enhanced. For

horizontal polarization and backscatter, as considered here, a poor choice would

be 0 at or near 37.80 from the vertical, for this value makes (5 sin 2 0 - 3 cos 2 0)

appearing in the second term identically zero. On the other hand, a value of 0 near

600 will usually result in the second term being larger than the first term, for WSL

non-zero and.near its saturation value. As mentioned previously, further reduction

of the first term can be effected by better pulse shaping so that the (sin x)/x

factor is replaced by one that falls off much more rapidly for large AkL.
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IV PROPAGATION FACTORS LIMITING THE
OPERATION OF AN HF ORBITAL SEA-STATE SENSOR

Introduction

Pertinent and perhaps crucial to the feasibility of an HF orbital sea-

state sensor is the evaluation of those propagation factors which may limit its

utility and thus undermine its competitive position vis-a-vis other techniques.

The factors of interest are chiefly related to the transmission of high frequencies

through the ionosphere. It happens that the most useful frequencies are also

those most affected by the ionosphere. The principal factor which is likely to

have a limiting effect is the opacity of the ionosphere to the lower part of the

HF spectrum. Not so decisive, but still important, may be the excess transmission

loss due to absorption. Other factors of importance may include noise, magnetoionic

splitting and the resulting polarization rotation, and possibly, bandwidth and

Doppler limitations. Clearly, an assessment of the effects of the above factors

is essential at this stage of the study not only to the delineation of the sensor's

capability but also the eventual choice of system parameters and operational modes.

In the following paragraphs the above propagation effects are examined

in detail.

Minimum Penetration Frequencies

For the purpose of this discussion it is assumed that an orbital sensor

is above the level of maximum ionization in the uppermost layer of the ionosphere,

the F2 layer. Consequently, the transmission between the sensor and the surface

will be largely controlled by the conditions existing in the F2 layer.

With this assumption, the task of predicting the minimum penetration

frequencies is identical to that of predicting the F2 layer's critical frequencies.

These can be related to the published predictions of the monthly median MUF (zero)

F2. The latter parameters are published monthly by ITSA (Institute of Tele-

communication Sciences) and made available as world maps for each even hour of

Universal, or Greenwich Mean Time. (8 )  Using these maps, ionospheric predictions

can be made for any time or geographic location of interest, and any ionospheric

conditions as characterized, for instance, by the sunspot number.



49

To illustrate the procedure and to examine the ionospheric variation at

different times in the seasonal and polar cycles, five graphs (Figures 12 through 16)

have been prepared, showing the minimum vertical incidence penetration frequencies

as a function of Local Mean Time. The geographic location chosen for this

illustration is 50*N, 30°W, and corresponds to a position located in a rather

heavily traveled route in the North Atlantic, The conditions are those predicted

for the winter and summer of solar cycle 20 for both its minimum Sunspot number

(SSN : 17) and its maximum Sunspot number (SSN p 106). Also shown is the prediction

for the maximum of the earlier cycle (No. 19) in winter (SSN t 180).

It should be noted that several conditions affect the use and interpreta-

tion of these curves. One is connected with the definition of MUF (zero) F2 which

is really the maximum usable frequency at which an extraordinary wave can be

reflected from the F2 layer. Thus, the lowest penetration frequency of interest

to this discussion will, in general, be lower than MUF (zero) F2 by approximately

one half the gyrofrequency at the location (and height) of interest. Typically,

this adjustment is small (approximately .07 MHz). The second condition concerns

the utilization of the predicted frequencies at angles of incidence other than the

normal. In such instances, the penetration frequencies must be adjusted upward

by being multiplied by the secant of the angle of interest. Thus, for a sensor

which is programmed (or directed) to commence reception within ±250 from the

vertical, this implies a 10 percent increase in the penetration frequency.

Returning to Figures 12 to 16, we note several characteristics associated

with the F2 layer. A diurnal anomaly is exemplified by the diurnal asymmetry in

the prediction graphs. The winter curves show some correlation with the solar

elevation angle with the maximum occurring near noon of the Local Mean Time. In

summer, that maximum occurs in the afternoon and is not very pronounced. In fact,

near maximum conditions prevail most of the day. A seasonal anomaly, seen here

because of the high latitude of our assumed observation point, is manifested by

the fact that the penetration frequencies (for daytime) in winter exceed those

predicted (and observed) in summer. For the conditions chosen in our illustration

this appears to be true at both extremes of the solar cycle.
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Our choice of SSN = 180 (winter = December) is not coincidental. Not

only is the maximum SSN higher in that solar cycle (No. 19) but in December

another anomalous behavior is observed in the F2 layer--the so-called December

anomaly. Because of that anomaly (maximum seasonal ionization) and the high

Sunspot number, the predictions of Figure 16 can be viewed as being representative

of the worst propagation conditions which can be expected in the quiet ionosphere

at the particular point of observation.

In the above discussion, we have not aimed at an extensive geographic

coverage, but rather at a reasonably representative set of predictions. From

these the following conclusions can be deduced:

(1) Propagation conditions favorable to the operation of

the orbital sensor prevail, in a quiet ionosphere,

generally at night between 0 and 6 hours local time.

At such times transmission of frequencies as low as

5 MHz should be possible at the highest Sunspot

numbers in both winter and summer.

(2) In periods of very low solar activity and in summer

continuous transmission both day and night at

frequencies as low as 6 MHz should be possible. In

winter, transmissions of limited duration (0 to 8 hours)

should be possible at frequencies as low as 3.5 MHz.

(3) Daytime transmissions, under 10 MHz, are possible throughout

all seasons in periods of low and moderate solar activity;

also, in summers in periods of high solar activity.

This discussion has not considered propagation conditions in the polar

region or at times of geomagnetic storms. It is doubtful if the proposed approach

would be useful in polar regions or,at times of abnormal ionospheric conditions.

Absorption Loss

The absorption loss associated with the penetration of the ionosphere

by an HF wave is related to the preceding discussion although quantitative

analysis is, for a number of reasons, somewhat less tractable. The principal

reasons for this are the scarcity of definitive measurements, the tentativeness of

the available models and parameters used and, most important, the absence of

computation routines comparable to that used in predicting critical frequencies.
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The experimental data available consists largely of scattered measurements

employing transmission from satellites or riometer measurements. Also available

are several models using more or less (mostly less) realistic profiles of the

ionosphere.

An estimate of the magnitude of the absorption loss can be made from

measurements involving satellites. (9) It should be recognized, however, that the

results obtained refer to a particular set of circumstances and that their

extrapolation may present considerable difficulties. Fortunately, the circumstances

of the available measurements represent conditions typical of the most severe ones

to be encountered in the quiet ionosphere.

The most useful measurements available are those obtained with Sputnik I

and II. The observational parameters were:

Frequency: 20 and 40 MHz

Time: October, November, 1957; 8 to 9 hours local time

Observation Point: 550 42'N, 370 18'E (approximate)

Height of satellite: 450 km+

Applicable SSN: , 200

Predicted MUF (zero) F2: 14 MHz at 8 hours LMT

The measurements made were of the received field strength; knowing the parameters

of the systems, as well as the distance between the satellite and the ground

station, the coefficient of absorption can be determined as

e - = E /E (51)x o (51

where E = actually observed field strength and E = nonabsorbed, or free-space,x o

field strength calculated from the system parameters. The value of r thus

deduced for the point of nearest approach (estimated to be at about 450 km) is

1.35 or a total loss of approximately 12 dB. This is, we emphasize, an absorption

loss associated with a daylight transmission. It is unfortunate that no nighttime

estimates are available for it would certainly help with the process of extrapolation.

Just precisely how much can we say about the extrapolation of this loss

to other circumstances? Suppose the observations were made at night, say, at 2

hours LMT, with all other parameters remaining as before. Suppose we observed

the nighttime transmission at 5 MHz. Finally, suppose we repeated these measurements

at.the time when SSN is at its minimum, say, equal to 10.
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To be truthful, none of the above questions can be answered with any

degree of certainty without going through a rather complex modeling effort. For

one, the above value of absorption loss can be almost entirely accounted for by

the absorption in the F2 layer with the remainder of the ionosphere (D, E, and Fl layers)

contributing less'than 20 percent of the total. Whether a similar distribution

of loss prevails at night is doubtful. It is also not certain how the contributions

from various layers are distributed at different times during the solar epoch.

We can answer the posed questions at a risk of being tentative but,

hopefully, not entirely wrong. For this purpose we assume that the observed

absorption loss can be attributed to a single, well behaved layer for which, as

long as the absorption is nondeviative, the absorption loss for a single transit is

proportional to

(fcr/f)2  (52)

where f = critical frequency (approximately equal to MUF (zero) F2) and f iscr

the operating frequency.

Thus, if during the night fcr = 4.5 MHz, transmissions at 20 MHz wouldcr

suffer an absorption loss of 1.22 dB; a transmission at 5 MHz would suffer a

19.5 dB loss. For SSN = 10, the critical frequency is ' 3 MHz, thus, above 5 MHz,

transmissions at night would suffer a loss of about 8.7 dB. These last two values

are, admittedly, rather high and perhaps unexpected. Unfortunately, sufficient

data to verify these values are not currently available. For the time being we

must conclude that the transmission loss, due to absorption, is not negligible

especially at the lower penetration frequencies. It may not be imprudent to allow

for as much as 15 dB absorption loss in the total loss budget.

It should be noted that all of the foregoing discussion has been

restricted to conditions typical of a quiet ionosphere and it has also been assumed

that we are dealing only with nondeviative absorption. For frequencies of interest

to the sea-state sensor this is usually, but not always, true..
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The HF Noise Environment

Another factor which must be considered in the process of evaluating

the performance of an HF orbital sea-state sensor concerns the noise and inter-

ference levels in the immediate environment of the sensor. Together with the

assessment of other environmental and system.effects (absorption, polarization

mismatch, etc.) the noise data are needed for the specification of such primary

parameters as the transmitted power, waveform parameters, etc, to assure

satisfactory performance of the sensor.

The unique mission of an orbital sea-state sensor requires a characteriza-

tion of the noise environment at frequencies and in locations not normally

utilized for communications. Consequently, noise and interference data for HF

communications systems are not usable in our considerations. Neither are the

data obtained at HF for ground-based sensors although it is useful background

information and can be extrapolated to some extent.

It is evident that the most useful data will result from measurements

which have been performed in circumstances nearly matching those anticipated for

the HF sensor. To this end we have examined programs implementing orbi'tal,

top-side HF ionosondes. In what follows the available (and accessible) data are

reviewed, and subsequently applied to calculations of the scattered power density

at the sensor.

Measurements of HF noise both within and above the ionosphere have been

performed in a program leading to the realization of top-side ionosondes, chiefly

these concerned the Alouette I and II satellites although some other measurements

were also performed by rocket probes.(10) In the case of the Alouette measurements

these were conducted over an extended period of time in the frequency range from

1 to 15 MHz at altitudes of 500 to 3000 km. The receiver employed a 40 KHz

bandwidth in conjunction with a half-wave dipole. These measurements disclosed

the existence of several noise "bands" in the frequency spectrum each, tentatively,

being attributed to a different generating mechanism. Briefly, these are as

follows:
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(1) Cosmic noise - Observed over the entire range of

frequencies and characterized by a slow-varying

intensity, generally some 30 dB above the

receiver noise level.

(2) Iofospheric noise - Generally observed below the

local hybrid frequency (roughly equal to the square

root of the sum of squares of plasma and gyrofrequency)

and thus, also below the penetration frequency, its

level can exceed, at some frequencies, the receiver

noise by as much as 80 dB. For obvious reasons this

source of noise is of little consequence to the operation

of the HF sensor.

(3) Solar noise - Generally submerged in the cosmic noise

except in periods of solar activity; when observed, it is

broad band and varies in intensity from the cosmic noise

level to 30 or more dB above it. Occasionally, it can

obliterate all other emissions, including strong interference

from ground sources.

(4) Ground and Near-Ground noise - and man-made signals; these

are observed, generally, above the penetration frequency

although, occasionally, an anomalously propagated signal

can be received below it. This noise originates from

atmospheric storms, man-made devices and from ground-based

HF communication circuits. Evidence exists pointing to a

rather high level of these emissions (usually observed over

land), exceeding, on occasion, the receiver threshold by

as much as 90 dB.

Cosmic Noise Levels

Of the four noise bands identified only the cosmic noise and the ground

emission are of interest to the present discussion. The solar noise, although

quite high, is too sporadic to be used as a reference in the sensor's design.
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For reasons which will be elaborated below, the cosmic noise emerges as the dominant

source in the environment anticipated for an HF orbital sensor. A graph showing

the cosmic noise spectrum obtained from the Alouette satellite and also including

other measurements is shown in Figure 17.(10) Note that at the lowest frequency

considered usable'for the HF orbital sensor (f = 3.5 MHz) the cosmic noise

temperature is of the order of 4 * 10s oK.

Ground and Near-Ground Noise and Interferences

We have noted in the preceding section that the high level of noise and

interference which is observed above the ionosphere at frequencies above the

penetration frequency is chiefly attributed to ground and near-ground emissions.

These include atmospheric noise, noise originating with man-made devices and

installations, and the interference produced by ground-based, HF communication

circuits. The available, satellite acquired data, does not allow conclusions as

to the geographic distribution or diurnal and seasonal variations. Presumably,

the high level quoted by Hartz was observed over densely populated land masses

(say, North American continent) since neither Alouette I or II employed data

storage facilities. Whether similarly high levels of ground noise would have been

observed over the Indian Ocean, for example, is highly'doubtful. It can be argued,

that with the exception of transmitters located near the suborbital point and having

reasonable antenna gains near the vertical, the interference from other communication

circuits should be minimal. This is because such circuits, operating over oblique

paths, will quite certainly employ frequencies much higher than those of the sensor.

Of course, the above argument does not preclude interference from an anomalously

propagated noise, whatever its source. The probability of occurrence of such

interference, or its level, is however, difficult.to assess.

The noise originating with atmospheric storms presents essentially a

similar problem although its spectrum occupancy is broad band. Thanks to the

concerted effort of organizations such as CCIR, adequate information on its level,

distribution, and occurrence at the ground level is available. We know, for

example, that local storms generally tend to occur in the afternoon hours over(11)
land masses;(11) seasonally, the storm centers tend to move northward during the

northern hemisphere summer and vice versa. Therefore, the atmospheric radio

noise is greatest during the local summer and least during the local winter. An

example of atmospheric noise, together with other emissions, observed at
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Washington, D.C., is shown in Figure 18. Such records are now available for

virtually every location on the globe and are being continually updated.
( 12 )

The value of such records to our discussion is that it demonstrates

that even at the ground the cosmic noise can exceed both the man-made emissions

and the atmospheric noise (at least in winter). For mid-ocean locations, this

relationship is almost always true except near the equator. We should note,

however, that such records do not, as a rule, include interference from active

communication circuits.

It can be concluded, therefore, that the noise environment of an HF

orbital sensor can be expected, with reasonable certainty, to be dominated by the

cosmic noise, especially so at locations remote from the land masses and at

frequencies close to the local penetration frequency. An occasional interference

exceeding in intensity the cosmic noise level must be expected, its origin can

be, as we have seen, either terrestrial or solar or both,

Ionospheric Doppler Effects

A radio signal scattered from the sea surface and subsequentiy propagated

through the ionosphere will have imparted to it a Doppler frequency shift. The

total Doppler shift on the received HF signal will consist of a number of components.

A geometric shift due to the motion of the receiver, a shift due to the motion of

the scattering surface, and a Doppler shift due to propagation through the

ionosphere. The principal components of the ionospheric Doppler contribution

arise because of the dispersive and time-variant characteristics of the ionosphere.

Since the optical Doppler will be used to determine the directionality of the

ocean surface spectrum, these additive components may constitute an error which

must be estimated and perhaps corrected.

In the application of the HF orbital sensor, Doppler processing is

essential for the complete recovery of the directional information from the sea

surface. Thus, the effect of the ionosphere on the total Doppler shift must be

examined. This is done in the following paragraphs assumming a spherically

stratified ionosphere, transmission frequencies above the F2 penetration frequency

and the gyrofrequency, and quasi-planar geometry.
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Basic Considerations of the Doppler Shift

The Doppler shift imparted to the radio signal by the ionosphere may

be attributed to two mechanisms: (1) the time-variant nature of the medium as

exemplified by its motion, local winds, and the consequent movement of

"irregularities" sudden ionization, etc, and .(2) the dispersive characteristics

of the ionosphere which, when interposed between two terminals such as the

orbiting satellite and a fixed location on the ground, leads to a time varying

phase path and, thus, to a Doppler shift. Of the two mechanisms, the first is

of primary interest for fixed, point-to-point communications between ground

stations over ionospheric paths. The second mechanism is more dominant in

space-to-ground circuits, although both of the mechanisms are operative.

Referring to Figures 19 and 20, consider a source, located in the

ionosphere and emitting a radio signal of frequency w; this signal when received

upon its transit through the ionosphere will be proportional to

sin (wt - ) = sin (t) , (53)

where 0 is the phase retardation of the wave. This is given by

Ro+h pS= 4 o d( d 54
c cos (54)

0O

where p(T) is the real part of the refractive index of the medium and z is the.

local angle defined by the path and radial directions. The instantaneous

frequency of the received signal is

R+h
dY 1 d [ o dr

f d- = w (1 - d R () 4)-co (55)
dTr c dv T RCosR

0o

It is clear from the above that for a stationary source and ionosphere, there

will be no observable Doppler, although the wave arrival angle at the ground

terminal will be, in general, affected by refraction.
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However, if the ionosphere is stationary, but the source is traveling

at an orbital velocity Vo with the direction cosines.of V as defined in0

Figure 2, we have for the component of Vc in the direction of the refracted wave,

Vd = VO (cos C sin ic-cos cos i ) (56)

Now the Doppler shift in a medium characterized by the index of refraction pc

at the point of entry into the medium is

V Vd d
c/Pc VC

where ve is the characteristic phase velocity of the medium.

Thus

f= f V _c (cos c sin i - cos cos i ). (57)

oc c c

For a spherically stratified ionosphere

cr sin i = R sin i,
c c 0 x

where r = R +h, therefore0

6f Vo f oh cos a sin ix - cos P (Rh sin2 i (58)
oc R +h x c R +h x

o o

Here i is final angle of arrival (or zenith angle) at the ground. Before
x

proceeding with further simplications we note the two influences in the above

expression for Lf. One is the influence of the local (i.e., immediate environ-

ment of the satellite) index of refraction p c; the other influence resides in

the angle i which is the result of an integrated refraction over the entirex

path. For high altitude satellites the integrated influence predominates;

furthermore, for a circular orbit at any altitude cos 8 = o and

f ( 1I-) cos a sin ix (59)
1 1 +h1 x

Ro
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Thus, the calculation of Af for this case is reduced to the calculation of the

refractive effect. This can be done by, for example, by ray-tracing in the model

ionosphere. For our purpose it will be sufficient to utilize the result of a

simplified calculation ( 1 3 ) in which it is assumed that the transmitted frequency

is above both the penetration and gyrofrequency, the effect of collisions are

neglected, and h << R . For such an ionosphere

sin ix sin i 1 { 2 (60)
x 0 f2 (0

where

- 1 - h
N = Ndh .

oh -
0

Consequently, we have

I h ,
f( \ {

Af i Vo  h )cos sin i h 0 Af o + Af i  (61)
R 0
0

The first term of the above result is, of course, the geometric Doppler while the

second term can be termed the ionospheric Doppler error. We note that the latter

is inversely proportional to frequency and height and directly proportional to

the sine of the zenith angle, velocity, and the integrated electron density.

It will be of interest also to note that the ratio

Afi K f h
= J Ndh (62)

0 0

where

= e2

K = = 4.025 * 101 (MS Units) .
Sm
0
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Some Experimental Results and Extrapolations

To estimate the magnitude of the ionospheric Doppler effect we now will

examine some measurements which were previously discussed with respect to absorp-

tion loss estimates. The circumstances of these measurements were: Location -

Moscow, USSR; Time - November, 1957, 8-9 hours, LT; Frequency - 20 MHz;

Penetration frequency at the time of measurements - f F2 = 11.4 MHz; Height of
O

the satellite - h ; 500 km. The electron distribution for which the calculated
(14)

absorption loss best approximated the measured values was found by Kasautser(14)

to follow the so-called biparabolic law with an exponential continuation from

above the 3/2 h level. For such a model the integrated electron density
max

was 1.5* 1017 electron/m3 . For this value and a height of 500 km, we have

(at f = 20 MHz)

Afi = 4.025 * 101 1.5 101 03. (63)
Af- 5 * 105*4 * 1014 1.5 * 0 = .03. (63)

0

So far as the magnitude of Af. is concerned we can assume a typical zenith angle

(ix = 250) and an orbital velocity (Vo 
= 8 * 100 m/sec). For a = 0, then

6f. 5.9 Hz.
1

Using the above ratio of 3 percent we see that the geometric Doppler for the above

conditions was about 200 Hz.

We can compare these deductions with those of Lawrence and Little
(15 )

who predict Afi equal, about to 4 Hz at a time of 15 seconds after zero crossing.

Actual measurements performed under similar, but not identical, circumstances

by Hibbard and Thomas (1 6) yield a value of about 8 Hz. We quote these values

to verify the order of magnitude of our calculations. It is, however, impossible

to ascertain all the important parameters of these measurements, such as time,

f F2 or the altitude of the satellite.
0
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If such information were available, an extrapolation of the Doppler

shift would be quite possible. For example, in the ionospheric model employed

by Harautser we have

h
SNdh .96 N h + 7 * 101 N l-e .008

max max max ( 1
0

N ax .96 hmax + 70 (l-e - .008 Hmax max

where H = height of the satellite above the 3/2 h level and h a 120 km.
max max

If we assume that the form of the distribution is not affected by the solarh cycle

(which is not quite true) but only the value of N , then we can relate Ndhmax J

to the measured or predicted value of f F2, since o

f = 80.5 N
cr max

Consequently, we can write

h

h d 1 4 1- 2 f 
008 H)Ndh c 1.24 *10 2 f { .96 N + 70 ( l-e - 008 H) (64)cr max • (4

For the example calculated earlier we had fcr = 11.4 MHz. Suppose that thecr

measurements were performed at the time when fcr = 5 MHz. The corresponding valuescr

of Af. would then have been

Af f. 5 >2 , .193Af i
1 1 11.4 1

5 MHz 11.4 MHz 11.4 MHz .

or approximately 1.13 Hz. This example illustrates, incidently, the distinct

advantages of operating the orbital sensor in the night hours at which time the

penetration frequencies, absorption,and Doppler ionospheric errors are low.
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An Algorithm for an Adaptive Doppler Error Correction

Calculating the ionospheric Doppler error is not the only way through which

correction of the measured Doppler can be effected. Obviously, measuring the iono-

spheric Doppler imposed on the direct signal from the transmitter would accomplish

this task. However another scheme which appears to have, at least, the virtue of

simplicity can also be devised to recover the geometric Doppler directly from the

HF Doppler measurements. Consider the relation obtained earlier, now written as

follows

Af = Afo + f (f ( i) = fDo - 1D , (65)

where now Do, D. are functions independent of frequency. Suppose we measure Af at

two closely spaced frequencies such that f2 = pf so that

Af = f 1 Do - D.
ft

Afe = pf 1 Do - D. (66)

By multiplying the second equation by p and subtracting the first from the second

we have

p _ Af I

(Af)O = f1D0 = p (67)
p -1

Thus, measurement of the total Doppler at two related frequencies leads directly to

the determination of the geometric component.

It is difficult, at this point, to speculate just how accurate this

procedure would be and there seem to be no data, within reach, which would

illuminate this question. Similarly, no obvious criterion has been found, thus

far, for choosing the ratio of f2/f 1 = p. Presumably, this criterion would be

determined by our ability to measure the Doppler difference.
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Faraday Rotation

When traversing the ionosphere, any linearly polarized wave will decompose

into two elliptically polarized waves which traverse slightly different paths with

different propagation velocities. As a result the plane of polarization of a linearly

polarized wave will be rotated upon passage through the ionosphere. The amount of

rotation is related to a weighted integral of the electron density distribution over

the propagation path, or(17)

Kb

F j Ne B cos e ds

L a

b

YT K T Ne B sin 2 e ds , (68)

T a

where FY is the total angle of rotation, B is the magnetic field strength, Ne the

electron density, and e is the angle between the local magnetic field direction and

the propagation direction. The specific expression YFL or YF used depends upon

whether the propagation is nearly along the magnetic field or transverse to it. For

the HF frequencies of interest, the total angle of rotation may be hundreds of

radians, thus the relationship between the polarization of the received signal at

the satellite and the polarization at the ocean surface will not be known in general.

This essentially precludes use of polarization information to obtain the directional

spectrum for an HF orbital sensor.



72

V SYSTEMS CONSIDERATIONS AND REQUIREMENTS

Directional Spectrum Determination

For an HF orbital system the directional spectrum can be determined by

the use of the observed Doppler at the satellite, or by the use of a transmitting

antenna with horizontal directivity. At HF frequencies, particularly the lower

frequencies, directional antennas tend to be somewhat large and limited in

bandwidth. For a surface transmitter which is buoy mounted, for example, an

antenna with horizontal directivity would not, in general, be feasible.

Thus, the signal Doppler appears to be the most feasible way of

obtaining the directionality of the surface height spectrum. If ionospheric

effects are neglected, the received Doppler has two components. One of these

is the geometric or optical component due to the satellite's velocity. The other

is due to the motion of the ocean waves and is given by Equation 2. Consider

an omnidirectional transmitting antenna illuminating the ocean surface. A

satellite-borne receiver is located at a height h and passes on a particular

orbit so that at the closest point of approach the satellite is located at an

angle 0 from the transmitter zenith. The geometry of this situation is

illustrated in Figure 21.

For a satellite at an altitude h, moving with a velocity V (assumed
0

to be 8000 m/s) at an angle ywith respect to the positive x-axis (assumed

to lie in the mean wind direction) the geometric Doppler shift of a signal

scattered from a surface area dA is

Af = V fo p cos (P - (y) -h sin 0 cos (w' - ) (69)
c h + p2 cos 2 e - 2ph cos e sin e cos (p' - p)

The Doppler shift of the direct signal from the transmitter is

Af =-V osin cos (c ' - ) . (70)
c
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It is apparent from an examination of Equation 69 that for a scattering area

located at a particular position in terms of p, cD a specific Doppler shift is

imposed on the received signal.

To remove the effect of the radial distance p from the Doppler shift

and obtain a quantity depending only on the azimuthal location of the scattering

region D we will examine the relationship between the total transit time for a

signal scattered from a location p, c and the transit time for the direct signal.

The differential delay between the direct signal and the scattered signal is

given by

S= ( ){ p - (h/cos 8) +

12 + p2 cos 2 e - 2ph cos. 0 sin e cos (P - D')'/cos 0 (71)

It should be noted that in these expressions (Equations 69, 71) a flat earth has been

assumed. In actuality spherical earth geometry should be used. This was done during

this study, however, for the range of parameters of interest the results differ

negligibly from the flat earth case and the flat earth expressions are used for

simplicity.

Equations 69 and 71 can be used to determine the relationship between

the angular location of a scattering region and the Doppler shift, subject to the

constraint that the received signal lies in a specific range cell, i.e. the

differential delay T is fixed. Given a value of 0 and T, Equation 71 can be solved

for p and thus used with p in Equation 69 to determine the Doppler shift.

These expressions can also be used to obtain constant Doppler and delay

contours on the surface by fixing Af and T and solving for p and (. A computer

routine to do this was developed and Figure 22 illustrates the constant Doppler

and delay contours for a satellite with h = 400 km, 0 = 100, cD' = 1300, and

o= 40'. These particular parameters correspond to the satellite located at the

closest point of approach.

From Figure 22 we see that at a specific delay and Doppler frequency

there are two different angular locations which have the same Doppler shift. If

the angular location on the surface is to be determined via the Doppler shift

then this ambiquity must be resolved. This can be done in general by making
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use of multiple range cells, or using similar information from another orbital

location. With multiple range cells and the information derived from an entire

pass considerable redundant information is obtained.

At the satellite receiver, the signal has a Doppler spread due to the

cumulative effect'of the scattering from the different regions of the ocean

surface illuminated by the transmitter. The.total integrated signal power

contains information about the wave height spectrum at the incident wave number,

while the directional information resides in the shape and relative intensity

of the Doppler spectrum. This comes about due to the different regions of

the surface contributing to different frequencies of the Doppler spectrum with

an intensity which is determined by the ocean wave directionality at that point.

To determine the specific form of the received Doppler spectrum it is

necessary to transform the expression for the received power at the satellite

2
P G G \-LPt t r ,o o

dPr (4~)s p2 r e  a pdpdD (72)

from the p, c coordinates to f,T coordinates.

In the f, T system

dPr = Pt Gt Gr - L o JI ddf , (73)

(410 3 p r 2

where J is the Jacobian representing' the transformation from the p,( coordinates

to the f,T coordinates. The value of J is given by

j = p a _P ap (74)

The explicit value of J in terms of the geometric parameters can be obtained by

evaluating the partial derivatives using Equations 69 and 71. The resulting

expressions are very complex and will not be repeated here. These have been

programmed, however, and in Figures 23 and 24 the unfolded Doppler frequency

and the magnitude of J have been plotted versus the angular position on the
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surface for two different sets of conditions. One for = 100, = 400, and

= 1300 or CPA, and one for e = 200, , = 400, and c' = 80. Both of these

figures correspond to a situation where all the surface regions are scattering

with equal intensity or an isotropic wave height spectrum.

From these figures we see that the spectrum would peak at values

near the maximum and minimum frequency excursions and drop to a lower value

in the middle. The actual observed spectrum will be folded due to the

angular ambiquity discussed earlier and will also be determined by the surface

wave directionality and the scattering geometry. In Figures 25 and 26 curves

are given of the actual Doppler spectrum that would be observed with a 1 Hz

resolution for an isotropic wave height spectrum and a cos 2 .0 wave height

spectrum-directionality. These curves were computed using a computer program

in which all of the relevant effects have been incorporated. The satellite

was located at 9 = 100, w' = 1200 for these curves with y = 400.

The expression used to compute these Doppler spectra was Equation 73

integrated with respect to T over a 3 km range cell. The differences in the

received Doppler spectrum resulting from the different directional dependences

of the ocean wave height spectrum are quite apparent in Figures 25 and 26.

System Parameters

In order to determine the equipment configurations required for an HF

orbital sea-state sensor we must know the required system parameters. One such

parameter is the signal-to-noise ratio at the receiver. The total signal power

power at the receiver is given by

f2 T2 P Gt Gr 2 L

Pr (4) r 2 a J d df , (75)
fl TI
~1 1l

The noise power as discussed in Section IV is due to cosmic noise and has a

maximum effective noise temperature of 4 * 106 *K. The noise power associated

with this temperature is

-17
N = KTB = 5.5 * 10 Watts/Hz (76)
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The signal-to-noise ratio for a matched filter receiver is then

f 2 T2 PG G rX2 L TS ttr= J(-) r o J dI ddf (77)

N N f(41)JJr N I_27d
fl 1

where T is the coherent integration time.

In evaluating this expression the loss factor L should be broken into

two parts

L = L + F (78)
C R

where L includes such factors as ionospheric absorption, mismatch loss, and otherC

miscellaneous system losses. The specific value of L is of little consequencec

as long as an adequate signal-to-noise ratio exists. Since the losses appearing

in L will affect both the direct and scattered signals the ratio of the two willc

be independent of these and accurately reflect the scattering propertiep of the

surface.

The factor FR is different, however. This factor is the excess loss

above the free space value suffered by the incident field as it propagates as

a ground wave from the transmitter to the scattering region on the surface.

This loss is a function of the range of the scattering region from the

transmitter, the frequency, and the surface properties, i.e., sea state. A

detailed examination of HF ground wave propagation over a rough sea is

presented in Reference 18. Figures 27 and 28, reproduced from that report,

illustrate the effect of sea state on the ground wave loss. Since this loss

is sea state dependent, and it must be either known or negligible in order to

recover the surface wave height spectrum from the received signal, the surface

area utilized must be confined. The maximum range should probably be confined

to the order of 20 to 25 km in order that the variation in FR with both frequency

and sea state be less than 3 dB.
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With this constraint on the maximum range and the value of FR the

signal-to-noise ratio has been computed for a 400 km orbit with a 10 watt average

transmitter power output, a noise power of 5.4 * 10"17 watts/Hz, an integration

time of .02 s, a 10 [s range cell, a total loss L of 20 dB, and a Pierson-Moskowitz

isotropic wave height spectrum corresponding to a 20-knot wind velocity. For the

purpose of this computation the antenna gains were assumed to be unity. The

signal-to-noise ratio versus frequency for this case is illustrated in Figure 29.

The very sharp rise in the signal between 3 and 4 MHz is characteristic

of the surface spectrum for this wind velocity as illustrated by Figure 5. By

about 5 to 6 MHz we are in the saturation region and the slight decline in the SNR

as the frequency increases is due to the X2 factor in Equation 77 and the frequency

dependence of L. It should be noted that the noise power assumed was constant and

not frequency dependent. In fact, it would tend to decrease with increasing

frequency as illustrated in Figure 17, thus causing the SNR to generally increase

slightly with frequency in contrast to the trend shown in Figure 29. The SNR

values illustrated in Figure 29 indicate that 10 watts of average power are more

than adequate for the system.

The choice of a 10 ps range cell is based on several criteria., As

indicated previously, the maximum range of interest is of the order of 20 to 25 km.

In order to Doppler process for the directional surface spectrum and solve the

angular ambiquities, several range cells may be required within the 20 to 25 km

limit. In addition, the direct signal must be isolated and be relatively

uncontaminated by energy scattered from the immediate vicinity of the transmitter

since it is required for reference purposes. All these constraints indicate that

as narrow a range cell as practicable is desired. A further reason for this is the

range/Doppler coupling indicated in Figure 22. If the range cell is too large, the

angular resolution on the surface becomes limited by the range cell size rather

than by the Doppler resolution available. These constraints indicate that a range

cell of 10 to 20 ps is required. Narrower range cells would probably cause

hardware difficulties, while larger cells would create several problems as discussed

above.

The overall system parameters required of an HF orbital sea-state sensor

are given in Table I. The specific hardware implementations of these parameters

are discussed in the following section.
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TABLE I. SYSTEM PARAMETERS

Transmitter

Power Output - 10 watts average

Frequency - 3 to 30 MHz, switched in 1 to 2 MHz steps

Stability - 1 part in 108

Spectral width - <.5 Hz

Pulse width - 10 to 20 ps

Antenna - vertical polarization, azimuthally omnidirectional

PRF - 500 to 1000 pps

Receiver

Frequency - 3 to 30 MHz, switched in 1 to 2 MHz steps

Noise figure - not critical

Local oscillator stability - 1 part in 108

Time synchronization - not critical

IF bandwidth - 50 to 100 kHz

System bandwidth - 25 to 50 Hz

Coherent Integration Time - 1 s

Range Gates - 3 or more

Antenna - Horizontally polarized

Prior to discussing the hardware requirements, however, it is of interest

to inquire about the effect of not being able to operate below about 3 MHz on the

ability of the HF sensor to determine the RMS surface height for the higher sea

states. The RMS surface height is obtained as indicated in Equation 16 by

integrating the surface spectrum. This was done for cases where the lowest useful

operating frequency was assumed to 1 MHz, 3 MHz, and 5 MHz, respectively. The

results are presented in Table II, where the mean-square surface height estimates

obtained with the Pierson-Moskowitz spectrum and various lower frequency limits

are compared with the exact values for several wind velocities. The table clearly

indicates that a lower frequency limit of 3-5 MHz is adequate for wind velocities

up to 20 knots or sea state 4. For a 40 knot wind or sea state 8, even operation

down to I MHz results in an error of a factor of 2.
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TABLE II. MEAN SQUARE SURFACE HEIGHT ESTIMATES IN METERS FOR VARIOUS

WIND VELOCITIES VERSUS THE LOWEST OPERATING FREQUENCY

Lowest Operating

Frequency, MHz 5 knots 10 knots 20 knots 40 knots

0.0 (exact value) .00137 .022 .352 5.63

1.0 .00137 .022 .350 2.39

3.0 .00137 .022 .301 .38

5.0 .00137 .022 .296 .139

Hardware Requirements

In order to satisfy the system parameters presented in Table I, several

different hardware configurations might be used. The factor which influences the

hardware configuration the most is the choice of waveform. If a single pulse-

Doppler waveform is chosen, then a coherent transmitter capable of radiating a

pulse train consisting of 10 to 20 ps pulses with an average power of the order of

10 watts is necessary. In order to reduce the peak power requirements, it is

desirable to operate at a high pulse repetition rate or some form of pulse com-

pression might be used. Both the transmitter and receiver must be synchronously

stepped over the frequency range of 3 to 30 MHz, remaining at a particular

frequency for at least one s in order that Doppler processing for a 1 Hz reso-

lution can be accomplished. Resolution of this order would allow an angular

resolution of about 100 on the ocean surface.

The transmitter stability should be of the order of 1 part in 108 in

order to achieve the desired Doppler resolution. The receiver local oscillator

stability must be of the same order.

From a hardware design standpoint it appears that the hardware required

to implement a pulse-Doppler orbital system with the required parameters would not

present any fundamental difficulties. The choice as to how much processing would

be done on board the satellite and how much on the ground obviously cannot be made
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now. It is probable that a command receiver would also be desired at the

transmitter site in order to allow the transmitter to be activated only on command.

This would be particularly true for a buoy-mounted transmitter.

Probably the most uncertain element with respect to the hardware

configuration concerns the transmitting and receiving antennas. It is necessary

that the transmitting antenna be vertically polarized, and a simple vertical whip

will suffice. On the other hand, the resolution of the angular ambiguity associated

with the use of the received signal Doppler for determination of the directional

spectrum would be aided considerably if a directional transmitting antenna were

available. A directivity pattern that would be useful would be the ability to

illuminate one angular quadrant at a time, or even a figure eight type of pattern

could be of use if switchable in orientation.

Two vertical monopoles can be used to obtain a figure eight type of

pattern in the horizontal plane if phased properly. In order to change the

orientation by 90*, however, a spacing of the order of one-half wavelength is

required between the elements. At 3 MHz this corresponds to 50 meters, a rather

large separation. If four elements are used, they can be spaced much closer and a

switchable figure eight pattern obtained. The spacing in this case corresponds to

about one-eighth of a wavelength or approximately 12 meters at 3 MHz. This is still

too large for a buoy-mounted system, although it could be used on a ship. If

several elements were used at the transmitter, either two or four, the phasing

network would also have to be switched as the transmitter frequency is changed.

The receiving antenna must be horizontally polarized. The simplest

receiving antenna appears to be a long horizontal wire. No specific attention

has been given to the achievement of this for a satellite receiver, although

it is appreciated that it might present some difficulty.

An Aircraft Experiment

In order to validate the concepts presented here and.further define the

hardware configuration required for an operational HF bistatic sea state monitor,

an aircraft experiment should be carried out. During this experiment an

aircraft-borne receiver should be utilized with a transmitter located on a ship to

measure the directional surface spectrum in an area which is also instrumented with

,wav.e spars or other conventional instrumentation for wave height measurements.
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Such an experiment will not only verify. the concept and aid in defining

the required satellite hardware but will allow the system and hardware requirements

to be determined for the use of the HF bistatic technique as an aircraft-borne

ground truth measurement system. In fact, it is the only system currently known which

may be capable of measuring the full directional spectrum relatively easily and at

relatively low cost. One can envision a system in which the aircraft drops a

relatively low-cost buoy containing the transmitter and then by flying on a

straight-line path near the buoy location obtains the full directional wave

height spectrum in the vicinity of the buoy.

For a satellite-borne HF bistatic sea state sensor the orbital motion of

the satellite and the resultant Doppler shift imposed on the scattered signal can

be used in conjunction with range resolution to determine the directional dependence

of the ocean surface spectrum. Doppler spreads of as much as 40 to 50 Hz can result,

and Doppler processing to provide a 1 Hz resolution would allow the surface spectrum

directionality to be obtained with approximately a 100 resolution. For a typical

aircraft-borne receiver, however, the Doppler spread would typically be of the order

of 0.5 to 0.7 Hz. Thus, to achieve the same surface resolution would require Doppler

processing to a resolution of 0.01 to 0.02 Hz. Doppler processing to this order,

although possible, would present some problems and will complicate the experimental

equipment requirements. On the other hand no ionospheric limitations will exist

for an aircraft-borne system.

It would be desirable to utilize a coherent waveform and carry out Doppler

processing, if possible. This would allow the unambiguous directional spectrum to

be obtained and would validate the concept of using the signal Doppler for obtaining

the directional spectrum. In addition, if the direct signal is available, such

factors as variations in the transmitter power output and the transmitting and

receiving antenna gains with operating frequency can be removed by referencing

the scattered signal level to the direct signal level. If the direct signal is

not available, these factors must be initially measured in order that the measured

scattered signal levels can subsequently be corrected.

For a coherent pulse-Doppler airborne system, the equipment requirements

are essentially the same as in the satellite case, except that Doppler resolutions

of the order of 0.01 to 0.02 Hz are required for the same angular resolution. This

means that coherent integration times of the order of 50 to 100 s would be necessary

with transmitter and local oscillator stabilities of the order of one part in I0o
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over periods of the order of 50 to 100 s. The basic spectral line widths of the

transmitter and local oscillator should be less than 0.01 Hz. Purely from a

hardware standpoint, these requirements are attainable, and a pulse-Doppler waveform

could be used for the aircraft experiment. One problem that would be encountered

with Doppler resolutions of the order of 0.01 to 0.02 Hz would be spreading due to

fluctuations in the aircraft's velocity. This may limit the attainable Doppler

resolution to about 0.05 Hz and the subsequent angular resolution to approximately

360, assuming a maximum 10 percent velocity fluctuation.

Although a pulse-Doppler approach as suggested for a satellite system

appears feasible for an aircraft experiment, some thought has also been given to the

use of a coherent FMCW waveform which would provide both range and Doppler resolution.

Such a waveform appears to have some advantages over the pulse-Doppler with respect to

hardware simplifications. It also appears to be somewhat more flexible and more

immune to interference. Such a system is relatively simple, in that the transmitter

radiates a coherent waveform which is swept over intervals of 50 to 100 kHz at a

basic sweep rate of perhaps a MHz, thus providing 10 sweeps per s. The frequency

versus time waveform is essentially a sawtooth in shape. At the receiver the

receiver local oscillator is synchronously swept over the same frequency interval

at the same rate, except that the sweep starting points are delayed in time by an

amount corresponding to the range delay between the transmitter and receiver. The

receiver local oscillator is also offset by a fixed amount corresponding to a

desired IF frequency. This would nominally be somewhere in.the HF band so that a

conventional communications receiver could be used as the IF amplifier. The

scattered signal, after mixing with the receiver local oscillator, then has a

spectral spread which corresponds to different ranges. At the receiver output the

signal for each sweep is sampled, A/D converted, and recorded on digital tape. The

number of sweeps recorded is determined by the desired Doppler resolution. For

example, if one recorded 256 sweeps at a rate of 10 sweeps per s, a Doppler reso-

lution of 0.04 Hz would result. Typically, a 100-kHz bandwidth might be swept 10

times per s for 25.6 s. If 128 received signal samples per sweep are recorded, then

sufficient data would exist to generate 64 range cells with a 3 km resolution per

cell and 256 Doppler cells with a resolution of 0.04 Hz per cell. These would be

generated digitally by the application of the fast Fourier transform row by row and

then column by column to the 128 X 256 matrix of data consisting of the 128 samples

per sweep and the 256 sweeps. Actually, to save processing time only the desired
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range cells would be generated. Thus, only a few of the columns resulting from the

first row by row transform would be subsequently transformed.

In terms of hardware requirements, the stability and spectral purity

required of the transmitter and receiver local oscillator for the FMCW case are the

same as for a pulse-Doppler system. For the FMCW waveform, however, no peak power

problems exist, and the IF bandwidth required in the receiver is comparable to that

normally encountered in HF communications receivers. For example, with the

waveform parameters quoted above, an IF bandwidth of only 1.28 kHz is required.

This reduction in the IF bandwidth requirements could be of particular

importance for an aircraft experiment. In the case of'an orbital sensor, the

ionosphere will screen the receiver from much of the man-made interference, and the

use of a 50 to 100 kHz IF bandwidth may be possible without the system being

seriously affected by the interference. For an aircraft, however, the situation is

quite different. It is very unlikely that 50 to 100 kHz of essentially clear

bandwidth is available anywhere in the HF region, and 20 or more such channels would

be required for the bistatic system. In addition, the use of a pulse-Doppler wave-

form, which requires that high-power short pulses be emitted for a period of the

order of 1 to 2 minutes, would tend to cause considerable interference to other HF

band users.

The FMCW waveform, because of its limited IF bandwidth requirements and

because IF limiting can be used to ameliorate against strong interfering signals,

would, in general, be much less susceptible to interference than the pulse-Doppler

waveform. In addition, because the frequency is continually sweeping, much

less interference to other HF band users would result from the FMCW waveform.

The FMCW technique, in general, appears to be very flexible in that

extensive preprocessing data editing can be carried out, if desired. For example,

various weightings can be applied to reduce frequency sidelobes, the effects of

aircraft acceleration or a curved flight path can be compensated, etc. The FMCW

technique appears feasible, and it has been used recently for several applications.

For example, several HF backscatter oblique ionosondes have very successfully used

this approach.

The FMCW approach does, however, require good time synchronization between

the transmitter and receiver. For example, a 1 ps timing error in the sweep start

time corresponds to a 0.3 km range error. For sea state measurements, however, range
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errors of this order would not appear to be as serious as for some other applications.

A block diagram of a transmitter and receiver using the FMCW waveform is given in

Figure 30.

For an aircraft experiment a somewhat undesirable alternative to the use

of the signal Doppler for determination of the surface spectrum directionality is

the use of the average signal polarization and a proper experimental geometry. For

example, for a flight path which is essentially a constant direction flight passing

over, or near, the transmitting site, those surface regions which are intersected

by a vertical plane through the flight path are the primary contributors to a

horizontally polarized receiving antenna oriented along the flight path. A trailing

wire would be representative of such an antenna. Thus, by using such a horizontally

polarized antenna, combined with flights at a number of azimuths over the transmitter,

the surface spectrum directionality can be estimated.

For a horizontally polarized receiving antenna, unless a directional

transmitting antenna is used, there will be a 1800 ambiguity in the directional

information obtained. For example, the upwind-downwind spectral component versus

the crosswind spectral component can be obtained; however, the upwind component

cannot be separate from the downwind component. The use of a direction4l transmitting

antenna is possible, as discussed previously, with a ship-based transmitter.

From the standpoint of the overall experimental hardware cost and complexity,

it appears that the use of a noncoherent system with the signal polarization used to

obtain a measure of the directionality of the surface spectrum would be suitable.

If Doppler processing is not used, then the demands upon the transmitter and receiver

local oscillator stability and spectral purity will be substantially less. In fact,

it appears that a CW or long-pulse system could be used since the direct signal would

appear to be 10 to 20 dB below the scattered signal if CW or long pulses are used in

conjunction with a vertical whip transmitting antenna.

In this event, the experimental hardware would consist of a CW or long-pulse

HF transmitter capable of being switched in frequency over the range from approxi-

mately 1 to 30 MHz in 15 to 30 steps. The switching times are not critical; however,

something less than a second is desirable. The average power output required would

be of the order of 1 watt. The transmitter frequency could either be crystal controlled

or use high-quality tuned circuits since stability of the order of a part in 107 is

all that would be required for noncoherent processing.
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DETERMINATION OF MEAN SURFACE POSITION AND SEA STATE FROM

THE RADAR RETURN OF A SHORT-PULSE SATELLITE ALTIMETER

by

Donald E. Barrick

INTRODUCTION

Sea surface roughness has always represented an unavoidable degradation to

[1,2]
the performance of a satellite radar altimeter [ 2  . It would be desirable for geo-

detic purposes to measure the position of the mean sea surface to an accuracy of less

than a foot. Sea states over the oceans result in waveheights commonly of the order

of six or more feet. It is physically obvious that such waveheights will "stretch"

the receiver output pulse in some way, producing an uncertainty in the position of

the mean surface of the order of the sea waveheight. Since sea state at any given

time and place on the ocean is usually unknown, and since the interaction mechanism

of an altimeter pulse with the sea has not yet been fully analyzed, doubt. has re-

mained as to the efficacy of an altimeter to determine mean sea level to the precision

geodetically desired.

It is the purpose of this discussion to show that sea state effects on altimeter

performance need not limit its accuracy, primarily because the interaction between

the radar pulse and the ocean waves is understood and predictable. Using a physically

simple but rigorous theory, the pulse distortion from wind-driven sea waves will

be analyzed. The validity of the results will be established by comparison with

two independent sets of experimental data.

Based upon the analysis set forth herein, the mean sea level can be

extracted from a satellite altimeter receiver signal. A simple one-step process

will be suggested, whereby the incoherent, averaged signal versus time is differentiated,

and the mean level is seen immediately as the position of the peak. The rms ocean

waveheight and/or wind speed responsible for the ocean waves can then be inferred

directly from the width of this signal derivative pulse.
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PHYSICAL THEORY RESPONSIBLE FOR SCATTER

For the microwave frequencies at which an altimeter will operate, scatter

from the sea within the near-vertical region directly beneath the satellite is quasi-

specular in nature. This means that such scatter is produced primarily by specular

or glitter points on the surface whose normals point toward the satellite. This is

the same mechanism producing the dancing glitter of sunlight or moonlight on a water

surface. Such scatter persists only as far as 15-20' from the vertical, since

gravity waves can seldom maintain slopes greater than this amount before they break

and dissipate energy. A physical picture of the specular points illuminated within

a 'short-pulse radar cell advancing at an angle e with respect to the mean surface is

shown in Figure A-1.

This specular point scatter is readily predictable from geometrical and/or
us[3)

physical optics principles, and has been analyzed previously . Here we extend

the theory to include the height of the surface, since the short radar pulse will

not illuminate the entire surface at a given time, but only those waves whose

heights are sufficient to lie within the radar pulse. As the starting point,

we note both from elementary geometrical optics principles or from more rigorous
[3,4]

physical optics derivations [3 4 ] , that the field scattered from N specular points

(expressed in terms of the square root of the backscatter cross section) is

N

CB = I/2 g / ei2 kohi cos 0 (A-l)B =

where g. is the Gaussian curvature at the i-th specular point, i.e., gi = P iP il'

with Pi and p. as the principal radii of curvature at this point. Also, h. is the

height of the i-th specular point above the mean surface (taken as k = 0), e is the

angle of incidence from the vertical, and ko = 2TT/X is the free-space radar wavenumber,

X being the wavelength.

Squaring the above equation and averaging with respect to the phase,

ij , note that ij = 2ko cos 0(h. + h.) will be uniformly distributed between zero

and 21 as long as the sea waveheight is larger than the radar wavelength. Thus the

average of the double summation over i and j is zero except where j = -i, reducing the

result to a single summation:
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FIGURE A-1. PHYSICAL PICTURE OF SPECULAR POINT SCATTER. SPECULAR POINTS

WITHIN RADAR RESOLUTION CELL ARE SHOWN HIGHLIGHTED.
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N

<oaBph = gi. (A-2)
iL-

Now, we rewrite this equation in integral form as a distribution of specular

points versus height above the surface, h, and Gaussian curvature, g, as

CO co

<aB>ph = A. dh N(h,g)g dg , (A-3)
-m 0

where AN(h,g) is the number of specular points within a surface patch of area A,

within the height interval h to h + dh, and with Gaussian curvatures between g and

g + dg.

The averaging process is completed by defining n(h,g) <N(h,g)> as the

average specular point density, and we then denote TO(h) as the average radar cross

section per unit area of the surface per unit height increment, Ah, at a given

height h; thus

co

TP(h) = T n(h,g) g dg (A-4)
0

Here we employ the normalization uo = TV(h)dh, where co is the standard average

backscatter cross section per unit area. Thus, a short pulse producing a vertical

radar resolution cell of width Ah at height h will produce, on the average, a radar

cross section per unit area of Te(h)Ah.

The specular point density, n, can readily be determined (almost by

inspection) from the work of Barrick[3] preceding Eq. (A-7) of that paper; one must merely

include height in the probability densities. Thus the density of specular points

within area A is

n(h,g) dg = p(h,C ,C ,C ,C ,C ) C - IdC dC dC , (A-10)xsp ysp xx yy xy xx yy xy xx yy xy

where p is the joint probability density function of the surface height h, the surface

slopes x y, and the second partial derivatives of the surface at a given surface

point. Since it is known a priori that scatter is originating at surface regions
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with their normals pointing toward the satellite, the slopes which must be used are

geometrically known; we denote them Cxsp and Cysp"

Likewise, the Gaussian curvature at a specular point is found from

differential geometry to be

( +C2 +2 )2
( xsp ysp .g C C2x -("A-11)
xx yy xy

Hence we arrive at the result

TP (h) = JJ I C C2 lp(h,C ( , (,0(h) = ' H xx yy xy- yp(hxsp, ysp ,xx ,xy , yy) x

(1 + 2 + C2 )2

sp s d( d( d(
S dxxxx dy xy yy xyCX Cyy - Cxy

= r(l + C2 + 2 )2 p(h,s ,y ) (A-12)
xsp ysp xsp ysp

For backscatter, the squared factor in parentheses is merely equal to sec
4 e,

where 0 is the incidence angle from the vertical. Also, it is simple to show that,

while the surface height h and second derivatives are correlated, the height and

slopes are uncorrelated. Hence, if the surface is Gaussian (or nearly so, which is

true for the sea), the height and slopes are statistically independent and we have

W°(h) = n sec 4 9 p(h)p(C xsp, ysp) , (A-13)

where p(h) is the height probability density and p(Cx, y) is the joint slope

probability density. The above result can now be applied to predict the average

radar cross section observed at a short-pulse altimeter as a function of time.
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APPLICATION TO SHORT-PULSE SATELLITE ALTIMETER

1. General Development

Eq. (A-13) can now be applied to the problem depicted in Fig. A-2: a satellite at

altitude H emitting a spherical pulse which in turn sweeps past a spherical earth.

The spatial pulse width for a backscatter radar is cT/2, where c is the velocity of

light and T is the time width of the pulse (compressed, if applicable) at the receiver

output. Likewise, the distance of the spherically emanating pulse from the satellite,

measured in time at the receiver from transmission of the signal, is ct/2. However,

for convenience, we henceforth choose t = 0 as the time that the center of the

spherical pulse shell strikes the uppermost cap of the spherical earth. In other

words, in the absence of any roughness, the received pulse from.the suborbital point

will be a replica of the processed transmitter pulse, and we choose its center time

position as a reference in order to study the effect of sea state on pulse distortion.

First of all, we note from Fig. A-2 that the angle of incidence, 0, at any

point on the surface is given by e i * + cp -- (1 + H/a) for 0 small. The incidence

angle at the intersection of the mean earth spherical surface and the center of the

pulse cell, expressed in terms of receiver time is then 0 1-/(ct/H)(l + H/a). For

a short pulse, 0 can be considered a constant within the pulse cell width. The

height, h, to a point at the center of the cell above the mean sea surface can then

be given as

h = H(l - cos *) + a(l - cos c) - (ct/2)cos ( (Al4)
cos CP

and for 4 small, this reduces to

h H 2(1 + H ct (A-15)
2 a 2

At this point, we must make some assumptions about the surface statistics

and radar properties in order to perform the integration. For the sake of studying

the general nature of the radar return, we make the following assumptions: (i) the

signal shape is flat, of width T, and zero everywhere else, (ii) the antenna beam

pattern is uniform out to B off the axis, and zero everywhere else; B is thus the
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half-power half-beamwidth of the antenna . We assume also that the sea surface height

and slope probability distributions are Gaussian, realizing of course that the height

distribution to second order is not quite Gaussian, but slightly skewed from the

symmetric Gaussian shape, and has less probability in the tails. Furthermore, we

assume that the sea is nearly isotropic, making the slopes Cx and y independent of

wind direction. This is quite valid for very small incidence angles (and hence

specular slopes).

Thus we have

tan2

p(xsp ,~ysp ) = p(tan 0) = --- e , (A-16)
xsp ysp u

and

h
2

2o

p(h) = e , (A-17)
2 oh

where s e = <(2> + <2> and a2 = <h 2 > .
x y h

Later, when relating these quantities to wind-developed waves, we shall use

the relationships

s = 5.5 X 10 V and C2 = 2.55 X 10 " v 4  , (A-18)

where v is wind velocity in meters per second. The first of these relationships is
[5]

inferred empirically from slope data versus wind speed presented in Phillips 5 ] , and

the second is obtained from integrating the Phillips wind-wave height spectrum.

Thus, the observed average radar cross section as a function of time will

be

H Ah
-B h+-

o(t) = 2 2 a 2 J p(tan G)sec4 9 sin p(h)dh d , (A-19)

0h All
2

*Other, possibly more realistic, pulse and beam shapes can be readily inserted into
the integral if desired.



A-9

where e and h were related to p previously.

For a pulse width.sufficiently short that Ah (cT/2) < 2ah, we can
approximate the second integral and obtain a closed-form answer for the remaining

integral. Physically, this requires that the spatial pulse width be less than the

rms ocean waveheight (peak-to-trough). This is realized on the open ocean with

compressed pulse widths less than about 10 ns for waves excited by winds greater than

about 10 knots. For simplicity we shall make this assumption here, analyzing the more

general case at a later date. The result is then

TT c T Ict er B' ic)

o(t) 2s[(1/a) +( 1 /H)] erf ct + erf B-ct , (A-20)

/U h V-8 ah

where H' = H[l + (H/a)]. The quantities in the braces are the error functions; the

first one is responsible for the rising leading edge of the radar return, while the

second produces the fall-off of the trailing edge.

2. Pulse-Limited Altimeter (*B >> cT/H')

When the radar is sufficiently high, the beamwidth sufficiently wide, and

the pulse length sufficiently short, the response of the altimeter is said to be

pulse-limited. This means in effect that the earth area illuminated most of the

time lies in a "range ring" of constant surface area, as shown in Fig. (A-3a). Such

a situation will always exist for a short-pulse satellite altimeter, will nearly

always exist for aircraft altimeters, but may not exist for tower-based altimeters

looking at the sea (an example of the latter will be discussed subsequently). The

general form of Eq. (A-20) is valid for either pulse- or beam-limited operation,

under the simplifying assumptions madepreviously (flat pulse and antenna pattern,

short-pulse operation).

In this mode of operation, the mean surface at the suborbital point lies

somewhere in the leading, rising edge of the echo. The essence of the problem,

however, is that the rise time of the leading edge is not only inversely proportional

to the transmitted signal bandwidth (or shape)--a factor which could easily be

removed for high signal-to-noise ratios because the signal shape is known a priori--

but the rise time varies also with sea state because of temporal dispersion caused

by the spatial distribution of specular points.
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To study the theoretical shape of the leading edge of the return for the

pulse-limited case, we examine Eq. (A-20). First of all, we note that the return

rises rapidly to a maximum, has a flat shape in the middle of duration tD = (H'/c) ,

and falls off to zero as rapidly as it rose. The shape of the pulse is symmetric

about t /2. In practice, such a flat, symmetric return will not be observed, primarily

because the antenna pattern falls off with increasing *, rather than remaining constant

out to *B and then dropping suddenly to zero, as we assumed here. The shape shown in

Fig. Az-3a is more typical of the overall echo shape. The shape of this latter portion

of the signal need not concern us here, however, because it contains no information

about the mean surface position and little information about sea state. The maximum

value of a(t) is of concern, however; it is readily found from Eq. (A-20) by noting that

-the maximum value of the quantity in braces is 2. Hence, OMA X = TT cT/[s 2 (1/a + 1/H)].

To study the leading edge versus sea state, we use parameters typical of a

Skylab satellite altimeter: H = 435 km, *B = 1.50, and T < 15 nsec. In addition, we

use Eq. (A-18) to relate the statistics of the wind-excited surface to wind speed.

The result is the family of normalized curves shown in Fig. A-4, showing the leading

edge of the return. The mean surface, of course, is located at t = 0, which appears

at precisely one-half the maximum value. The effect of sea state is as expected;

higher wind speeds and hence greater rms roughness heights tend to stretch (i.e.,

disperse) the leading edge, giving a greater rise time.

3. Beam-Limited Altimeter (* B < < /cT/H')

In less frequent altimeter applications, the configuration may be beam-

limited, as shown in Fig. A-3b. In this case, the interaction at the surface

directly beneath the altimeter appears planar, i.e., the effects of the spherical

earth and spherical pulse front are negligible. This could occur for a low-flying,

narrow-beam aircraft altimeter, but would not exist for a'satellite altimeter.

When this extreme is achieved, the return can best be analyzed by expanding the

second term in Eq. (A-20) in a Taylor series, expanded about argument ct//V Oh).

This gives

2 H2  t )2
cTH B ( ch

o(t) [e + "* , (A-21)
2,/2 s2o hh

where the higher-order terms omitted here are of the order of H' 2//8y Oh, which is
Bassumed to be small since we have taken cT/2 < 2 h

assumed to be small since we have taken cT/2 < 2cya1
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The maximum and the Gaussian nature of this return are easily seen from

the above equation. The width of the pulse is directly related to the rms surface

height, and the mean position of the surface occurs precisely at the pulse peak.

DEDUCTION OF MEAN SURFACE POSITION AND SEA STATE
FROM ALTIMETER-RETURN

If we can employ a beam-limited short-pulse altimeter, we will have no

trouble deducing either the mean surface position or the rms surface height of the

ocean. The former is found from the pulse peak position and the latter from its

width, as readily observed from Eq. (A-21). Unfortunately, the parameter requirements

for this limiting configuration are such as to preclude its implementation on a

satellite.

Restricted, then, to pulse-limited altimeter operation from a satellite,

the question remains as to how to find the mean surface position in the leading edge

of the extended echo. From Eq. (A-20) and the curves plotted in Fig. A-4, the answer

is obvious--in the absence of noise. Merely find the half-power point on the rising

edge; this time corresponds to the distance to the mean surface. However, in the

presence of additive, independent noise, and with the often-jagged appearance of the

echo near its maximum (see measured returns in Fig. A-6); finding this half-way point

becomes more difficult.

A signal processing technique to be suggested here makes use of the fact

that this half-power point defining the mean surface position is also the point of

maximum slope. Hence, we suggest that the processor form the time derivative of the

altimeter output power--after incoherent averaging (or summing) and band-pass filtering

of several pulse returns. Thus, the incoherent averaging and filtering will remove

much of the jagged noise, while providing a smooth, clearly recognizable leading

edge. The derivative of this signal is easy to form from Eq. (A-20). It is

~2( ct )
ricT * c '" ho'(t) 2 2sT h 1+H e (A-22)

Crh a H+

Figure A-5 shows a family of normalized curves of this average altimeter

leading-edge output differentiated versus time. The pulse center is the mean surface

position, and its width is'clearly proportional to rms surface height (or the square
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of wind velocity, for wind-driven waves). There is no need for absolute measures of

signal level, either for mean surface position or for sea state determination; hence,

atmospheric attenuation and system power drifts are not critical.

A large amount of noise can, of course, degrade the pulse positioning

accuracy of this system, as in any system. However, so long as aMAX is several

decibels above the noise level, the position of the pulse center in the signal

derivative should be relatively insensitive to noise. The degradation of altimeter

accuracy with sea state and noise level has the desirable attributes of pulse-position

modulation (PPM) systems of digital communication theory, but should be the subject

of further study.

COMPARISON OF THEORETICAL MODEL WITH GROUND-TRUTH DATA

For verification of the theory and the various assumptions that have gone

into it, we choose measured data from two separate altimeter experiments: one pulse-

limited and the other beam-limited. The pulse-limited data chosen was measured and

reported by Raytheon [6 ] for aircraft flights at 10,000 ft with a pulse width of

20 ns. The half-beamwidth, *B' is 2.50, and the surface winds reported during

Flights 14 and 16 were 12 and 22 knots, respectively. Their averaged altimeter

outputs are shown in Fig. A-6. Since there is no precise way of comparing measured

surface position with that calculated, we intend to compare the actual sea state

effects, as contained in the leading-edge rise time, t , with those calculated. Wer

roughly measure rise times of 21 and 30 ns for the two records displayed, and use

Eqs. (A-18) and (A-20) to calculate the wind speeds required to cause seas producing

this rise time. The calculated winds are 14.1 and 21.2 knots, comparing reasonably

well with the measured winds. Good comparison on Flight 14 was not expected,

because the condition cT/2 > 2uh is barely satisfied for this mild sea condition.

When this inequality is not satisfied, Eq. (A-20) is not applicable, and one must

instead go back to Eq. (A-19). Practically, this means that with a 20 ns pulse, one

cannot hope to meaningfully measure sea states which will produce a rise-time

stretching of less than 20 ns.

As an example of the comparison of Eq. (A-21) for beam-limited operation with

[7]measurements, we selected data recently reported by Yaplee et al [7 ] . His measurements

were taken from a tower at H = 70 ft above the water and *B = 10. His pulse width

= 1 ns was long enough to assure beam-limited operation, but short enough to allow
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the condition cT/2 < 2ah to be satisfied for the two sets of data reported. We

compare the shapes of the curve given by our Eq. (21) with what he has called the
,

impulse response shown in his Figs. 11 and 12. He plots the responses measured

both by radar and by a wavestaff, for two different days on which the significant

waveheights (measured by the wavestaff) were 3.1 and 5.2 ft. Since his response

heights were relative, we compare the shape of .his curves in Fig. A-7 with that of

our Eq. A-21, using rms waveheight, ah, corresponding to 3.1 and 5.2 ft. The

agreement in width is quite good. The comparison also points out where the Gaussian

assumption for the sea height is weak: in the echo tails and in the symmetry about

the center. The Gaussian surface has some (small) probability of very large heights,

and is always symmetric, whereas the height of real ocean waves can never be

infinite, and the surface is not exactly symmetric for positive and negative heights.

These differences, while interesting, should not detract from the fact that the

simple Gaussian model can be applied adequately well to predict mean surface position

and rms waveheight.

CONCLUSIONS

The principal conclusions to be made from this analysis are that a

short pulse altimeter can be used--even in the presence of high seas--to measure

accurately the mean surface level and also to deduce the sea state. The simple

interaction of the microwave altimeter pulse with the sea at near-vertical incidence

is separable from the more complex interaction mechanism at larger incidence angles;

It follows the straightforward specular point theory derivable from either geo-

metrical or physical optics.

In satellite applications, the altimeter return will be pulse-limited

in its nature. For reasonably meaningful measurements of the geoid, the pulse

width must be kept small, i.e., less than 20 ns. It is precisely for these short

pulses that ocean waveheights can temporally disperse the signal leading edge. We

have shown by the specular point theory, however, that this interaction is known

and its results are predictable. We have suggested and discussed a signal processing

scheme employing the signal derivative, which can locate the mean surface position

from the pulse position and the rms surface height from the pulse width.

*-The impulse response essentially has the effect "deconvolving" the pulse shape and
size from the return to give a result with the same meaning as our Eq. (A-21).
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Comparison of the theory with measurements and ground-truth data for two

different altimeter modes (pulse- and beam-limited operation) lend credence to the

theory. System noise can and will limit altimeter accuracy, but this can be reckoned

with in a systematic manner using principles of PPM communication theory. Other

practical effects such as nonrectangular pulse shapes can be accounted for in any

further system analysis by including an additional pulse-shape factor in the

integrand of Equation (A-19).

In short, the pulse-sea interaction is at present sufficiently well

understood and verified that a short-pulse altimeter could be built which will

provide: (1) accurate determination of mean sea level to a precision much greater

than ocean waveheights, and (2) as a by-product, can provide rms ocean wave height

(or wind speed) as well.
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